scholarly journals Abundance of ClC-1 chloride channel in human skeletal muscle: fiber type specific differences and effect of training

2018 ◽  
Vol 125 (2) ◽  
pp. 470-478 ◽  
Author(s):  
Martin Thomassen ◽  
Morten Hostrup ◽  
Robyn M. Murphy ◽  
Brett A. Cromer ◽  
Casper Skovgaard ◽  
...  

Cl− channel protein 1 (ClC-1) may be important for excitability and contractility in skeletal muscle, but ClC-1 abundance has not been examined in human muscle. The aim of the present study was to examine ClC-1 abundance in human skeletal muscle, including fiber type specific differences and the effect of exercise training. A commercially available antibody was tested with positive and negative control tissue, and it recognized specifically ClC-1 in the range from 100 to 150 kDa. Abundance of ClC-1 was 38% higher ( P < 0.01) in fast twitch Type IIa muscle fibers than in slow twitch Type I. Muscle ClC-1 abundance did not change with 4 wk of training consisting of 30 min cycling at 85% of maximal heart rate (HRmax) and 3 × 30-s all out sprints or during a 7-wk training period with 10–12 × 30 s uphill cycling and 4–5 × ~4 min cycling at 90%–95% of HRmax. ClC-1 abundance correlated negatively ( P < 0.01) with maximal oxygen consumption ( r = –0.552) and incremental exercise performance ( r = –0.546). In addition, trained cyclists had lower ( P < 0.01) ClC-1 abundance than lesser trained individuals. The present observations indicate that a low abundance of muscle ClC-1 may be beneficial for exercise performance, but the role of abundance and regulation of ClC-1 in skeletal muscle of humans with respect to exercise performance and trainability need to be elucidated. NEW & NOTEWORTHY Abundance of the Cl− channel protein 1 (ClC-1) chloride channel may be important for excitability and contractility in human skeletal muscle and may therefore have implications for fatigue development. In this study, we confirmed ClC-1 specificity for a commercially available antibody, and this study is first to our knowledge to determine ClC-1 protein abundance in human muscle by Western blotting. We observed that abundance of ClC-1 was higher in fast compared with slow twitch fibers and lower in trained individuals than in recreationally active.

2012 ◽  
Vol 22 (4) ◽  
pp. 292-303 ◽  
Author(s):  
Ildus I. Ahmetov ◽  
Olga L. Vinogradova ◽  
Alun G. Williams

The ability to perform aerobic or anaerobic exercise varies widely among individuals, partially depending on their muscle-fiber composition. Variability in the proportion of skeletal-muscle fiber types may also explain marked differences in aspects of certain chronic disease states including obesity, insulin resistance, and hypertension. In untrained individuals, the proportion of slow-twitch (Type I) fibers in the vastus lateralis muscle is typically around 50% (range 5–90%), and it is unusual for them to undergo conversion to fast-twitch fibers. It has been suggested that the genetic component for the observed variability in the proportion of Type I fibers in human muscles is on the order of 40–50%, indicating that muscle fiber-type composition is determined by both genotype and environment. This article briefly reviews current progress in the understanding of genetic determinism of fiber-type proportion in human skeletal muscle. Several polymorphisms of genes involved in the calcineurin–NFAT pathway, mitochondrial biogenesis, glucose and lipid metabolism, cytoskeletal function, hypoxia and angiogenesis, and circulatory homeostasis have been associated with fiber-type composition. As muscle is a major contributor to metabolism and physical strength and can readily adapt, it is not surprising that many of these gene variants have been associated with physical performance and athlete status, as well as metabolic and cardiovascular diseases. Genetic variants associated with fiber-type proportions have important implications for our understanding of muscle function in both health and disease.


2007 ◽  
Vol 103 (6) ◽  
pp. 2105-2111 ◽  
Author(s):  
A. R. Tupling ◽  
E. Bombardier ◽  
R. D. Stewart ◽  
C. Vigna ◽  
A. E. Aqui

To investigate the time course of fiber type-specific heat shock protein 70 (Hsp70) expression in human skeletal muscle after acute exercise, 10 untrained male volunteers performed single-legged isometric knee extensor exercise at 60% of their maximal voluntary contraction (MVC) with a 50% duty cycle (5-s contraction and 5-s relaxation) for 30 min. Muscle biopsies were collected from the vastus lateralis before (Pre) exercise in the rested control leg (C) and immediately after exercise (Post) in the exercised leg (E) only and on recovery days 1 (R1), 2 (R2), 3 (R3), and 6 (R6) from both legs. As demonstrated by Western blot analysis, whole muscle Hsp70 content was unchanged ( P > 0.05) immediately after exercise (Pre vs. Post), was increased ( P < 0.05) by ∼43% at R1, and remained elevated throughout the entire recovery period in E only. Hsp70 expression was also assessed in individual muscle fiber types I, IIA, and IIAX/IIX by immunohistochemistry. There were no fiber type differences ( P > 0.05) in basal Hsp70 expression. Immediately after exercise, Hsp70 expression was increased ( P < 0.05) in type I fibers by ∼87% but was unchanged ( P > 0.05) in type II fibers (Pre vs. Post). At R1 and throughout recovery, Hsp70 content in E was increased above basal levels ( P < 0.05) in all fiber types, but Hsp70 expression was always highest ( P < 0.05) in type I fibers. Hsp70 content in C was not different from Pre at any time throughout recovery. Glycogen depletion was observed at Post in all type II, but not type I, fibers, suggesting that the fiber type differences in exercise-induced Hsp70 expression were not related to glycogen availability. These results demonstrate that the time course of exercise-induced Hsp70 expression in human skeletal muscle is fiber type specific.


2011 ◽  
Vol 110 (3) ◽  
pp. 820-825 ◽  
Author(s):  
Robyn M. Murphy

Human physiological studies typically use skeletal muscle biopsies from the heterogeneous vastus lateralis muscle comprised of both fast-twitch and slow-twitch fiber types. It is likely that potential changes of physiological importance are overlooked because fiber-type specific responses may not be apparent in the whole muscle preparation. A technological advance in Western blotting is presented where proteins are analyzed in just one small segment (<2 mm) of individual fibers dissected from freeze-dried muscle samples using standard laboratory equipment. A significant advance is being able to classify every fiber at the level of both contractile (myosin heavy chain and tropomyosin) and sarcoplasmic reticulum [sarco(endo)plasmic reticulum Ca2+-ATPase type 1] properties and then being able to measure specific proteins in the very same segments. This removes the need to fiber type segments before further analyses and, as such, dramatically reduces the time required for sample collection. Compared with slow-twitch fibers, there was less AMP-activated protein kinase (AMPK)-α1 (∼25%) and AMPK-β1 (∼60%) in fast-twitch fibers from human skeletal muscle biopsies.


2009 ◽  
Vol 107 (1) ◽  
pp. 283-289 ◽  
Author(s):  
Robert S. Lee-Young ◽  
Benedict J. Canny ◽  
Damian E. Myers ◽  
Glenn K. McConell

AMP-activated protein kinase (AMPK) has been extensively studied in whole muscle biopsy samples of humans, yet the fiber type-specific expression and/or activation of AMPK is unknown. We examined basal and exercise AMPK-α Thr172 phosphorylation and AMPK subunit expression (α1, α2, and γ3) in type I, IIa, and IIx fibers of human skeletal muscle before and after 10 days of exercise training. Before training basal AMPK phosphorylation was greatest in type IIa fibers ( P < 0.05 vs. type I and IIx), while an acute bout of exercise increased AMPK phosphorylation in all fibers ( P < 0.05), with the greatest increase occurring in type IIx fibers. Exercise training significantly increased basal AMPK phosphorylation in all fibers, and the exercise-induced increases were uniformly suppressed compared with pretraining exercise. Expression of AMPK-α1 and -α2 was similar between fibers and was not altered by exercise training. However, AMPK-γ3 was differentially expressed in skeletal muscle fibers (type IIx > type IIa > type I), irrespective of training status. Thus skeletal muscle AMPK phosphorylation and AMPK expression are fiber type specific in humans in the basal state, as well as during exercise. Our findings reveal fiber type-specific differences that have been masked in previous studies examining mixed muscle samples.


2018 ◽  
Vol 124 (4) ◽  
pp. 840-849 ◽  
Author(s):  
Irene S. Tobias ◽  
Kara K. Lazauskas ◽  
Jose A. Arevalo ◽  
James R. Bagley ◽  
Lee E. Brown ◽  
...  

Human skeletal muscle is a heterogeneous mixture of multiple fiber types (FT). Unfortunately, present methods for FT-specific study are constrained by limits of protein detection in single-fiber samples. These limitations beget compensatory resource-intensive procedures, ultimately dissuading investigators from pursuing FT-specific research. Additionally, previous studies neglected hybrid FT, confining their analyses to only pure FT. Here we present novel methods of protein detection across a wider spectrum of human skeletal muscle FT using fully automated capillary nanoimmunoassay (CNIA) technology. CNIA allowed a ~20-fold-lower limit of 5′-AMP-activated protein kinase (AMPK) detection compared with Western blotting. We then performed FT-specific assessment of AMPK expression as a proof of concept. Individual human muscle fibers were mechanically isolated, dissolved, and myosin heavy chain (MHC) fiber typed via SDS-PAGE. Single-fiber samples were combined in pairs and grouped into MHC I, MHC I/IIa, MHC IIa, and MHC IIa/IIx for expression analysis of AMPK isoforms α1, α2, β1, β2, γ2, and γ3 with a tubulin loading control. Significant FT-specific differences were found for α2 (1.7-fold higher in MHC IIa and MHC IIa/IIx vs. others), γ2 (2.5-fold higher in MHC IIa vs. others), and γ3 (2-fold higher in MHC IIa and 4-fold higher in MHC IIa/IIx vs. others). Development of a protocol that combines the efficient and sensitive CNIA technology with comprehensive SDS-PAGE fiber typing marks an important advancement in FT-specific research because it allows more precise study of the molecular mechanisms governing metabolism, adaptation, and regulation in human muscle. NEW & NOTEWORTHY We demonstrate the viability of applying capillary nanoimmunoassay technology to the study of fiber type-specific protein analysis in human muscle fibers. This novel technique enables a ~20-fold-lower limit of protein detection compared with traditional Western blotting methods. Combined with SDS-PAGE methods of fiber typing, we apply this technique to compare 5′-AMP-activated protein kinase isoform expression in myosin heavy chain (MHC) I, MHC I/IIa, MHC IIa, and MHC IIa/IIx fiber types.


Author(s):  
R. Wróblewski ◽  
W. Gremski ◽  
G. M. Roomans ◽  
R. Nordemar ◽  
L. Edström

Many diseases of the human skeletal muscle involve an atrophy of the muscle fibres. In some cases mainly one of the fibre types is affected. The fibre typing system used in this study is that of Padykula and Herman, 1955 and distinguishes between type I fibres which presumably correspond to the slow-twitch fibres and type II fibres which are the fast-twitch fibres. The type II fibres can be divided into type II A, II B and II C fibres. Recent advances in instrumentation and tissue preparation have permitted an investigation of the elemental composition of individual muscle fibres of known fibre type with the aim of comparing healthy and atrophied muscle fibres.In this study we have examined ten patients suffering from rheumatoid arthritis, two patients suffering from Parkinson's disease and two patients with upper motor lesions. As a control group we have examined muscles from eight healthy controls of the same age.


2021 ◽  
Vol 130 (4) ◽  
pp. 1001-1014
Author(s):  
Lauren E. Skelly ◽  
Jenna B. Gillen ◽  
Barnaby P. Frankish ◽  
Martin J. MacInnis ◽  
F. Elizabeth Godkin ◽  
...  

We examined mixed-muscle and fiber type-specific responses to a single session and to 12 wk of moderate-intensity continuous training (MICT) and sprint interval training (SIT) in humans. Both interventions elicited generally similar responses, although the training-induced increases in type I fiber-specific markers of mitochondrial content were greater in MICT than in SIT. These findings advance our understanding of the potential role of fiber type-specific changes in determining the human skeletal muscle response to intermittent and continuous exercise.


Author(s):  
Oscar Horwath ◽  
Helena Envall ◽  
Julia Röja ◽  
Eric Bengt Emanuelsson ◽  
Gema Sanz ◽  
...  

Human skeletal muscle characteristics such as fiber type composition, fiber size and myonuclear content are widely studied in clinical and sports related contexts. Being aware of the methodological and biological variability of the characteristics is a critical aspect in study design and outcome interpretation, but comprehensive data on the variability of morphological features in human skeletal muscle is currently limited. Accordingly, in the present study, m. vastus lateralis biopsies (10 per subject) from young and healthy individuals, collected in a systematic manner, were analyzed for various characteristics using immunohistochemistry (n=7) and SDS-PAGE (n=25). None of the analyzed parameters; fiber type % (FT%), type I and II CSA (fCSA), percentage fiber type area (fCSA%), myosin heavy chain composition (MyHC%), type IIX content, myonuclear content or myonuclear domain varied in a systematic manner longitudinally along the muscle or between the two legs. The average within subject coefficient of variation for FT%, fCSA, fCSA%, and MyHC% ranged between 13-18%, but was only 5% for fiber specific myonuclear content, which reduced the variability for myonuclear domain size to 11-12%. Pure type IIX fibers and type IIX MyHC were randomly distributed and present in <24% of the analyzed samples, with the average content being 0.1 and 1.1%, respectively. In conclusion, leg or longitudinal orientation does not seem to be an important aspect to consider when investigating human vastus lateralis characteristics. However, single muscle biopsies should preferably not be used when studying fiber type and fiber size related aspects given the notable sample to sample variability.


2006 ◽  
Vol 290 (6) ◽  
pp. E1245-E1252 ◽  
Author(s):  
René Koopman ◽  
Antoine H. G. Zorenc ◽  
Rudy J. J. Gransier ◽  
David Cameron-Smith ◽  
Luc J. C. van Loon

To investigate the in vivo effects of resistance exercise on translational control in human skeletal muscle, we determined the phosphorylation of AMP-activated kinase (AMPK), eukaryotic initiation factor 4E-binding protein (4E-BP1), p70/p85-S6 protein kinase (S6K1), and ribosomal S6 protein (S6). Furthermore, we investigated whether changes in the phosphorylation of S6K1 are muscle fiber type specific. Eight male subjects performed a single high-intensity resistance exercise session. Muscle biopsies were collected before and immediately after exercise and after 30 and 120 min of postexercise recovery. The phosphorylation statuses of AMPK, 4E-BP1, S6K1, and S6 were determined by Western blotting with phospho-specific and pan antibodies. To determine fiber type-specific changes in the phosphorylation status of S6K1, immunofluorescence microscopy was applied. AMPK phosphorylation was increased approximately threefold immediately after resistance exercise, whereas 4E-BP1 phosphorylation was reduced to 27 ± 6% of preexercise values. Phosphorylation of S6K1 at Thr421/Ser424 was increased 2- to 2.5-fold during recovery but did not induce a significant change in S6 phosphorylation. Phosphorylation of S6K1 was more pronounced in the type II vs. type I muscle fibers. Before exercise, phosphorylated S6K1 was predominantly located in the nuclei. After 2 h of postexercise recovery, phospho-S6K1 was primarily located in the cytosol of type II muscle fibers. We conclude that resistance exercise effectively increases the phosphorylation of S6K1 on Thr421/Ser424, which is not associated with a substantial increase in S6 phosphorylation in a fasted state.


Sign in / Sign up

Export Citation Format

Share Document