Regulation of cardiac protein balance by hydrocortisone: interaction with insulin.

1978 ◽  
Vol 234 (3) ◽  
pp. E306
Author(s):  
E E Griffin ◽  
K Wildenthal

In fetal mouse hearts in organ culture the rate of protein synthesis was substantially reduced and the rate of protein degradation slightly increased by hydrocortisone in the absence of insulin, but in the presence of insulin the steroid caused a small increase in protein synthesis and a significant reduction in protein degradation. Hydrocortisone promoted the net uptake (or reduced the net release) of branched-chain amino acids independent of insulin and independent of simultaneous changes in protein balance. The specific activities of the lysosomal enzymes cathepsin D and glucosaminidase were reduced by hydrocortisone in all media, whereas the specific activity of creatine kinase increased when the medium contained insulin but decreased in the absence of insulin. It is concluded that hydrocortisone regulates cardiac protein balance via alterations both in synthesis and in degradation. Some of the hormone's myocardial effects are influenced by insulin so that hydrocortisone is anabolic in its presence but catabolic in its absence.

1983 ◽  
Vol 244 (6) ◽  
pp. E615-E623 ◽  
Author(s):  
R. M. Flugel-Link ◽  
I. B. Salusky ◽  
M. R. Jones ◽  
J. D. Kopple

Protein synthesis and degradation and net uptake and release of amino acids and minerals were examined in the perfused hemicorpus of bilaterally nephrectomized and sham-operated control rats. Animals were studied 30 h after surgery. In comparison with controls, uremic rats had greater urea N appearance (net urea generation) and lower plasma and muscle concentrations of most amino acids. Muscle protein synthesis was not altered, but protein degradation was greater in uremic versus sham rats. There was greater net release of phenylalanine, tyrosine, alanine, total nonessential amino acids, total amino acids, potassium, and phosphorus from the perfused hemicorpus of uremic rats and greater release of citrulline from sham rats. ATP, creatine phosphate, cAMP, and activities of cathepsin B1, cathepsin D, and alkaline protease were not different in muscles of the uremic versus sham rats. Thus, in acutely uremic rats there is increased protein wasting in the hemicorpus due to enhanced protein degradation. The enhanced protein degradation does not appear to be due to increased muscle cathepsin B1, cathepsin D, or alkaline protease activities.


Hepatology ◽  
1987 ◽  
Vol 7 (2) ◽  
pp. 324-329 ◽  
Author(s):  
Wolfgang Base ◽  
Carl Barsigian ◽  
Alisa Schaeffer ◽  
Ellen Shaw ◽  
Jose Martinez ◽  
...  

1983 ◽  
Vol 210 (1) ◽  
pp. 63-71 ◽  
Author(s):  
J S Crie ◽  
J M Ord ◽  
J R Wakeland ◽  
K Wildenthal

1. The effect of colchicine (2.5 microM) on cardiac protein turnover was tested with foetal mouse hearts in organ culture. 2. Colchicine had no effect on protein synthesis, but inhibited total protein degradation by 12-18%. Lumicolchicine, which lacks colchicine's ability to disaggregate microtubules, but shares its non-specific effects, did not alter protein degradation. 3. The colchicine-induced inhibition of protein degradation was accompanied by significant changes in cardiac lysosomal enzyme activities and distribution. 4. Colchicine inhibited the degradation of organellar proteins, including mitochondrial cytochromes, more than that of cytosolic proteins. 5. Colchicine decreased the rate of myosin degradation and the rate of proteolysis of the total protein pool to a similar extent. Since the regulation of myosin degradation does not involve lysosomes, this suggests that colchicine affects non-lysosomal as well as lysosomal pathways. 6. Release of branched-chain amino acids from colchicine-treated hearts was disproportionately decreased, suggesting that colchicine increased their metabolism. 7. It is concluded that colchicine, via its actions on microtubules, exerts important inhibitory effects on cardiac proteolysis. Colchicine is especially inhibitory to the degradation of organellar proteins, including mitochondrial cytochromes. Its inhibitory effects may be mediated in part via lysosomal mechanisms, but non-lysosomal mechanisms are probably involved as well.


1988 ◽  
Vol 254 (2) ◽  
pp. 579-584 ◽  
Author(s):  
P J Garlick ◽  
I Grant

Rates of muscle protein synthesis were measured in vivo in tissues of post-absorptive young rats that were given intravenous infusions of various combinations of insulin and amino acids. In the absence of amino acid infusion, there was a steady rise in muscle protein synthesis with plasma insulin concentration up to 158 mu units/ml, but when a complete amino acids mixtures was included maximal rates were obtained at 20 mu units/ml. The effect of the complete mixture could be reproduced by a mixture of essential amino acids or of branched-chain amino acids, but not by a non-essential mixture, alanine, methionine or glutamine. It is concluded that amino acids, particularly the branched-chain ones, increase the sensitivity of muscle protein synthesis to insulin.


1990 ◽  
Vol 9 ◽  
pp. 21-22 ◽  
Author(s):  
M.A. McNurlan ◽  
S.D. Heys ◽  
K.G.M. Park ◽  
J. Broom ◽  
D. Brown ◽  
...  

1996 ◽  
Vol 271 (4) ◽  
pp. E748-E754 ◽  
Author(s):  
R. G. Hankard ◽  
M. W. Haymond ◽  
D. Darmaun

The aim of this study was to determine whether the putative protein anabolic effect of glutamine 1) is mediated by increased protein synthesis or decreased protein breakdown and 2) is specific to glutamine. Seven healthy adults were administered 5-h intravenous infusions of L-[1-14C]leucine in the postabsorptive state while receiving in a randomized order an enteral infusion of saline on one day or L-glutamine (800 mumol.kg-1.h-1, equivalent to 0.11 g N/kg) on the other day. Seven additional subjects were studied using the same protocol except they received isonitrogenous infusion of glycine. The rates of leucine appearance (RaLeu), an index of protein degradation, leucine oxidation (OxLeu), and nonoxidative leucine disposal (NOLD), an index of protein synthesis, were measured using the 14C specific activity of plasma alpha-ketoisocaproate and the excretion rate of 14CO2 in breath. During glutamine infusion, plasma glutamine concentration doubled (673 +/- 66 vs. 1,184 +/- 37 microM, P < 0.05), whereas RaLeu did not change (122 +/- 9 vs. 122 +/- 7 mumol. kg-1.h-1), OxLeu decreased (19 +/- 2 vs. 11 +/- 1 mumol.kg-1.h-1, P < 0.01), and NOLD increased (103 +/- 8 vs. 111 +/- 6 mumol. kg-1.h-1, P < 0.01). During glycine infusion, plasma glycine increased 14-fold (268 +/- 62 vs. 3,806 +/- 546 microM, P < 0.01), but, in contrast to glutamine, RaLeu (124 +/- 6 vs. 110 +/- 4 mumol. kg-1.h-1, P = 0.02), OxLeu (17 +/- 1 vs. 14 +/- 1 mumol.kg-1.h-1, P = 0.03), and NOLD (106 +/- 5 vs. 96 +/- 3 mumol.kg-1.h-1, P < 0.05) all decreased. We conclude that glutamine enteral infusion may exert its protein anabolic effect by increasing protein synthesis, whereas an isonitrogenous amount of glycine merely decreases protein turnover with only a small anabolic effect resulting from a greater decrease in proteolysis than protein synthesis.


2017 ◽  
Vol 313 (3) ◽  
pp. F805-F814 ◽  
Author(s):  
Takuya Yoshida ◽  
Sachika Kakizawa ◽  
Yuri Totsuka ◽  
Miho Sugimoto ◽  
Shinji Miura ◽  
...  

A low-protein diet (LPD) protects against the progression of renal injury in patients with chronic kidney disease (CKD). However, LPD may accelerate muscle wasting in these patients. Both exercise and branched-chain amino acids (BCAA) are known to increase muscle protein synthesis by activating the mammalian target of rapamycin (mTOR) pathway. The aim of this study was to investigate whether endurance exercise and BCAA play a role for increasing muscle protein synthesis in LPD-fed CKD (5/6 nephrectomized) rats. Both CKD and sham rats were pair-fed on LPD or LPD fortified with a BCAA diet (BD), and approximately one-half of the animals in each group was subjected to treadmill exercise (15 m/min, 1 h/day, 5 days/wk). After 7 wk, renal function was measured, and soleus muscles were collected to evaluate muscle protein synthesis. Renal function did not differ between LPD- and BD-fed CKD rats, and the treadmill exercise did not accelerate renal damage in either group. The treadmill exercise slightly increased the phosphorylation of p70s6 kinase, a marker of mTOR activity, in the soleus muscle of LPD-fed CKD rats compared with the sham group. Furthermore, BCAA supplementation of the LPD-fed, exercise-trained CKD rats restored the phosphorylation of p70s6 kinase to the same level observed in the sham group; however, the corresponding induced increase in muscle protein synthesis and muscle mass was marginal. These results indicate that the combination of treadmill exercise and BCAA stimulates cell signaling to promote muscle protein synthesis; however, the implications of this effect for muscle growth remain to be clarified.


1994 ◽  
Vol 302 (2) ◽  
pp. 601-610 ◽  
Author(s):  
D S Dunlop ◽  
X R Yang ◽  
A Lajtha

Increasing the plasma phenylalanine concentration to levels as high as 0.560-0.870 mM (over ten times normal levels) had no detectable effect on the rate of brain protein synthesis in adult rats. The average rates for 7-week-old rats were: valine, 0.58 +/- 0.05%/h, phenylalanine, 0.59 +/- 0.06%/h, and tyrosine, 0.60 +/- 0.09%/h, or 0.59 +/- 0.06%/h overall. Synthesis rates calculated on the basis of the specific activity of the tRNA-bound amino acid were slightly lower (4% lower for phenylalanine) than those based on the brain free amino acid pool. Similarly, the specific activities of valine and phenylalanine in microdialysis fluid from striatum were practically the same as those in the brain free amino acid pool. Thus the specific activities of the valine and phenylalanine brain free pools are good measures of the precursor specific activity for protein synthesis. In any event, synthesis rates, whether based on the specific activities of the amino acids in the brain free pool or those bound to tRNA, were unaffected by elevated levels of plasma phenylalanine. Brain protein synthesis rates measured after the administration of quite large doses of phenylalanine (> 1.5 mumol/g) or valine (15 mumol/g) were in agreement (0.62 +/- 0.01 and 0.65 +/- 0.01%/h respectively) with the rates determined with infusions of trace amounts of amino acids. Thus the technique of stabilizing precursor-specific activity, and pushing values in the brain close to those of the plasma, by the administration of large quantities of precursor, appears to be valid.


1994 ◽  
Vol 86 (3) ◽  
pp. 339-345 ◽  
Author(s):  
M. A. McNurlan ◽  
S. D. Heys ◽  
K. G. M. Park ◽  
J. Broom ◽  
D. S. Brown ◽  
...  

1 Rates of protein synthesis have been measured from the incorporation of 57 mg of l-[1-13C]leucine/kg for 90 min into muscle tissue and colorectal tumours removed at surgery from cancer patients. 2. For the 20 h preceding surgery and during the measurement of protein synthesis, the patients received intravenous saline, conventional intravenous nutrition (0.2 g of N and 103 non-protein kJ/kg body weight) or intravenous nutrition enriched with the branched-chain amino acids leucine, isoleucine and valine (0.2 g of N with 30% from branched-chain amino acids and 103 non-protein kJ/kg body weight). 3. Conventional intravenous nutrition resulted in a significant stimulation of the rate of protein synthesis in both muscle tissue (2.64 ± 0.75%/day versus 1.78 ± 0.51%/day in saline control, means ± SD) and tumour tissue (43.9 ± 10.3%/day versus 22.6 ± 5.6%/day in saline control). 4. Pre-operative nutrition enriched with branched-chain amino acids was less effective than conventional intravenous nutrition in stimulating protein synthesis in both muscle and tumour. The rates of protein synthesis were 2.12 ± 0.41%/day in muscle and 33.7 ± 5.3%/day in the tumours. 5. The expression of proliferating cell nuclear antigen in sections of the tumours showed changes with intravenous feeding of the two different amino acid mixtures that were similar to the changes in protein synthesis, and these two variables were significantly correlated. This is evidence that feeding with conventional mixtures and mixtures enriched with branched-chain amino acids stimulates tumour growth. 6. In this study the mixture enriched with branched-chain amino acids provided no clear advantage for cancer patients, since a smaller response to branched-chain amino acids was observed in both tumours and host muscle tissue.


Sign in / Sign up

Export Citation Format

Share Document