Protein and amino acid metabolism in posterior hemicorpus of acutely uremic rats

1983 ◽  
Vol 244 (6) ◽  
pp. E615-E623 ◽  
Author(s):  
R. M. Flugel-Link ◽  
I. B. Salusky ◽  
M. R. Jones ◽  
J. D. Kopple

Protein synthesis and degradation and net uptake and release of amino acids and minerals were examined in the perfused hemicorpus of bilaterally nephrectomized and sham-operated control rats. Animals were studied 30 h after surgery. In comparison with controls, uremic rats had greater urea N appearance (net urea generation) and lower plasma and muscle concentrations of most amino acids. Muscle protein synthesis was not altered, but protein degradation was greater in uremic versus sham rats. There was greater net release of phenylalanine, tyrosine, alanine, total nonessential amino acids, total amino acids, potassium, and phosphorus from the perfused hemicorpus of uremic rats and greater release of citrulline from sham rats. ATP, creatine phosphate, cAMP, and activities of cathepsin B1, cathepsin D, and alkaline protease were not different in muscles of the uremic versus sham rats. Thus, in acutely uremic rats there is increased protein wasting in the hemicorpus due to enhanced protein degradation. The enhanced protein degradation does not appear to be due to increased muscle cathepsin B1, cathepsin D, or alkaline protease activities.

1982 ◽  
Vol 242 (3) ◽  
pp. E184-E192 ◽  
Author(s):  
M. P. Hedden ◽  
M. G. Buse

Protein synthesis was measured in rat diaphragms incubated with serum amino acids + 0.35 mM L-[2,6-3H]tyrosine and different energy-yielding substrates. Muscles incubated with 5.5 mM glucose (with or without actinomycin D) synthesized more protein than those incubated with 11 mM pyruvate or 11 mM lactate. Tissue ATP decreased during incubation with lactate, but pyruvate maintained ATP, ADP, and creatine phosphate as well as glucose. Glucose 6-phosphate decreased in muscles incubated in glucose-free media. 14CO2 production from substrates was [1-14C]pyruvate greater than [1-14C]lactate greater than [3,4-14C]glucose. Intracellular lactate/pyruvate was measured to assess cytoplasmic free NADH/NAD+; the effect of different media on these ratios was lactate greater than glucose = lactate + pyruvate greater than pyruvate + glucose greater than pyruvate. Lactate + pyruvate (8.8 + 2.2 mM) supported protein synthesis better than pyruvate and as well as glucose. Adding glucose to pyruvate accelerated protein synthesis and increased NADH/NAD+. Iodoacetate (0.1 mM) inhibited glycolytic NAD reduction and abolished the stimulatory effect of glucose on protein synthesis in the presence of pyruvate. Supplementation of pyruvate media with 1 mM leucine or isoleucine stimulated protein synthesis, but beta-hydroxybutyrate, malate, alpha-ketoisocaproate, and all other amino acids were ineffective. The cytoplasmic redox potential may act as a translational modulator of protein synthesis in skeletal muscle.


2002 ◽  
Vol 87 (7) ◽  
pp. 3378-3384 ◽  
Author(s):  
Gianni Biolo ◽  
R. Y. Declan Fleming ◽  
Sergio P. Maggi ◽  
Thuan T. Nguyen ◽  
David N. Herndon ◽  
...  

We have investigated the relationships between the rates of muscle protein synthesis and degradation and of transmembrane transport of selected amino acids in leg skeletal muscle of 19 severely burned patients and 18 normal controls in the postabsorptive state. Patients were studied on the 14 ± 5 postburn day, and their mean burn size was 66% ± 18% of total body surface area. Methods were based on the leg arteriovenous balance technique in combination with biopsies of the vastus lateralis muscle and infusions of isotopic tracers of amino acids. Net muscle protein breakdown was greater in the patients because of an 83% increase in the rate of muscle protein degradation. The rate of muscle protein synthesis was also increased in the patients but to a lesser extent than protein degradation, i.e. by 50% with the arteriovenous phenylalanine balance technique and by 49% with the direct tracer incorporation method. The absolute values of inward transport of phenylalanine, leucine, and lysine were not significantly different in the two groups. However, the ability of transport systems to take up amino acids from the bloodstream, as assessed by dividing inward transport by amino acid delivery to leg muscle, were 50–63% lower in the patients. In contrast, outward phenylalanine and lysine transport were 40% and 67% greater in the patients than in the controls, respectively. We conclude the primary alteration in muscle protein metabolism is an acceleration of protein breakdown, and the increase in protein synthesis likely is due to increased intracellular amino acid availability as a result of accelerated breakdown. Transmembrane transport in the outward direction is accelerated, presumably to facilitate the export of amino acids from muscle to other tissues. In contrast, transmembrane transport in the inward direction is impaired relatively to the increased delivery of circulating amino acid to skeletal muscle secondary to accelerated blood flow.


2011 ◽  
Vol 43 (12) ◽  
pp. 2249-2258 ◽  
Author(s):  
DILLON K. WALKER ◽  
JARED M. DICKINSON ◽  
KYLE L. TIMMERMAN ◽  
MICAH J. DRUMMOND ◽  
PAUL T. REIDY ◽  
...  

1991 ◽  
Vol 260 (3) ◽  
pp. E499-E504 ◽  
Author(s):  
D. A. Fryburg ◽  
R. A. Gelfand ◽  
E. J. Barrett

The short-term effects of growth hormone (GH) on skeletal muscle protein synthesis and degradation in normal humans are unknown. We studied seven postabsorptive healthy men (age 18-23 yr) who received GH (0.014 micrograms.kg-1.min-1) via intrabrachial artery infusion for 6 h. The effects of GH on forearm amino acid and glucose balances and on forearm amino acid kinetics [( 3H]Phe and [14C]Leu) were determined after 3 and 6 h of the GH infusion. Forearm deep vein GH rose to 35 +/- 6 ng/ml in response to GH, whereas systemic levels of GH, insulin, and insulin-like growth factor I (IGF-I) were unchanged. Forearm glucose uptake did not change during the study. After 6 h, GH suppressed forearm net release (3 vs. 6 h) of Phe (P less than 0.05), Leu (P less than 0.01), total branched-chain amino acids (P less than 0.025), and essential neutral amino acids (0.05 less than P less than 0.1). The effect on the net balance of Phe and Leu was due to an increase in the tissue uptake for Phe (71%, P less than 0.05) and Leu (37%, P less than 0.005) in the absence of any significant change in release of Phe or Leu from tissue. In the absence of any change in systemic GH, IGF-I, or insulin, these findings suggest that locally infused GH stimulates skeletal muscle protein synthesis. These findings have important physiological implications for both the role of daily GH pulses and the mechanisms through which GH can promote protein anabolism.


1997 ◽  
Vol 273 (1) ◽  
pp. E122-E129 ◽  
Author(s):  
G. Biolo ◽  
K. D. Tipton ◽  
S. Klein ◽  
R. R. Wolfe

Six normal untrained men were studied during the intravenous infusion of a balanced amino acid mixture (approximately 0.15 g.kg-1.h-1 for 3 h) at rest and after a leg resistance exercise routine to test the influence of exercise on the regulation of muscle protein kinetics by hyperaminoacidemia. Leg muscle protein kinetics and transport of selected amino acids (alanine, phenylalanine, leucine, and lysine) were isotopically determined using a model based on arteriovenous blood samples and muscle biopsy. The intravenous amino acid infusion resulted in comparable increases in arterial amino acid concentrations at rest and after exercise, whereas leg blood flow was 64 +/- 5% greater after exercise than at rest. During hyperaminoacidemia, the increases in amino acid transport above basal were 30-100% greater after exercise than at rest. Increases in muscle protein synthesis were also greater after exercise than at rest (291 +/- 42% vs. 141 +/- 45%). Muscle protein breakdown was not significantly affected by hyperminoacidemia either at rest or after exercise. We conclude that the stimulatory effect of exogenous amino acids on muscle protein synthesis is enhanced by prior exercise, perhaps in part because of enhanced blood flow. Our results imply that protein intake immediately after exercise may be more anabolic than when ingested at some later time.


1978 ◽  
Vol 234 (3) ◽  
pp. E306
Author(s):  
E E Griffin ◽  
K Wildenthal

In fetal mouse hearts in organ culture the rate of protein synthesis was substantially reduced and the rate of protein degradation slightly increased by hydrocortisone in the absence of insulin, but in the presence of insulin the steroid caused a small increase in protein synthesis and a significant reduction in protein degradation. Hydrocortisone promoted the net uptake (or reduced the net release) of branched-chain amino acids independent of insulin and independent of simultaneous changes in protein balance. The specific activities of the lysosomal enzymes cathepsin D and glucosaminidase were reduced by hydrocortisone in all media, whereas the specific activity of creatine kinase increased when the medium contained insulin but decreased in the absence of insulin. It is concluded that hydrocortisone regulates cardiac protein balance via alterations both in synthesis and in degradation. Some of the hormone's myocardial effects are influenced by insulin so that hydrocortisone is anabolic in its presence but catabolic in its absence.


2004 ◽  
Vol 286 (4) ◽  
pp. E658-E664 ◽  
Author(s):  
Dominic S. C. Raj ◽  
Elizabeth A. Dominic ◽  
Robert Wolfe ◽  
Vallabh O. Shah ◽  
Arthur Bankhurst ◽  
...  

Serum albumin, fibrinogen levels, and lean body mass are important predictors of outcome in end-stage renal disease (ESRD). We estimated the fractional synthesis rates of albumin (FSR-A), fibrinogen (FSR-F), and muscle protein (FSR-M) in nine ESRD patients and eight controls, using primed constant infusion of l-[ ring-13C6]phenylalanine. Cytokine profile and arteriovenous balance of amino acids were also measured. ESRD patients were studied before (Pre-HD) and during hemodialysis (HD). Plasma IL-6, IL-10, and C-reactive protein increased significantly during HD. Despite a decrease in the delivery of amino acids to the leg, the outflow of the amino acids increased during HD. The net balance of amino acids became more negative during HD, indicating release from the muscle. HD increased leg muscle protein synthesis (45%) and catabolism (108%) but decreased whole body proteolysis (15%). FSR-A during HD (9.7 ± 0.9%/day) was higher than pre-HD (6.5 ± 0.9%/day) and controls (5.8 ± 0.5%/day, P < 0.01). FSR-F increased during HD (19.7 ± 2.6%/day vs. 11.8 ± 0.6%/day, P < 0.01), but it was not significantly different from that of controls (14.4 ± 1.4%/day). FSR-M intradialysis (1.77 ± 0.19%/day) was higher than pre-HD (1.21 ± 0.25%/day) and controls (1.30 ± 0.32%/day, P < 0.001). Pre-HD FSR-A, FSR-F, and FSR-M values were comparable to those of controls. There was a significant and positive correlation between plasma IL-6 and the FSRs. Thus, in ESRD patients without metabolic acidosis, the fractional synthesis rates of albumin, fibrinogen, and muscle protein are not decreased pre-HD. However, HD increases the synthesis of albumin, fibrinogen, and muscle protein. The coordinated increase in the FSRs is facilitated by constant delivery of amino acids derived from the muscle catabolism and intradialytic increase in IL-6.


Sign in / Sign up

Export Citation Format

Share Document