Inhibition of 25-hydroxyvitamin D3-1-hydroxylase by chronic metabolic acidosis

1982 ◽  
Vol 243 (4) ◽  
pp. E265-E271
Author(s):  
G. S. Reddy ◽  
G. Jones ◽  
S. W. Kooh ◽  
D. Fraser

Chronic metabolic acidosis had been shown to influence the renal metabolism of 25-hydroxyvitamin D3. Using the isolated perfused rat kidney model, we evaluated the rates of synthesis of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] in vitamin D-depleted [D(-)] and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] in vitamin D-replete [D(+)] rats. Metabolic acidosis was induced in both groups of rats by feeding aqueous ammonium chloride for 9 days. Kidneys isolated from D(-) acidotic rats (mean pH, 7.11) exhibited a decreased rate of 1,25(OH)2D3 synthesis (0.79 +/- 0.17 pmol produce . h-1 . g kidney-1) when compared with that (1.27 +/- 0.09) of D(-) nonacidotic (mean pH, 7.33) rats. There was a significant negative linear correlation between the rate of synthesis of 1,25(OH)2D3 and the hydrogen ion concentration of the animal (r = 0.79, P less than 0.005). The rate of synthesis of 24,25(OH)2D3 by the kidneys from D(+) acidotic (mean pH, 7.06) and nonacidotic (mean pH, 7.39) rats did not differ (0.81 +/- 0.21 vs. 0.60 +/- 0.12 pmol product . h-1 . g kidney-1). It is concluded that chronic acidosis suppressed 1-hydroxylase activity, but does not suppress 24-hydroxylase activity.

1980 ◽  
Vol 239 (1) ◽  
pp. E12-E20 ◽  
Author(s):  
A. M. Rosenthal ◽  
G. Jones ◽  
S. W. Kooh ◽  
D. Fraser

Kidneys of adult rats were removed and perfused with semisynthetic media with the object of elucidating the separate actions of factors implicated as modulators of renal metabolism of 25-hydroxyvitamin D3 (25(OH)D3). During a 3-h perfusion with 3[H]25(OH)D3, the kidney produced high yields of 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) or 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) depending on whether the rat had previously been, respectively, normocalcemic, normophosphatemic, vitamin D-replete or hypocalcemic, hypophosphatemic, vitamin D-deplete. With longer perfusion (up to 12 h), kidneys from normocalcemic, normophosphatemic, vitamin D-replete rats mainly produced 24,25(OH)2D3 but also amounts of 1,25(OH)2D3. This pattern was unaltered by reducing Ca or Pi concentrations of perfusate or by adding parathyroid hormone. Kidneys of hypocalcemic, hypophosphatemic, vitamin D-deplete rats perfused with low Ca, low Pi medium for 12 h at first produced 1,25(OH)2D3 exclusively. However, 24,25(OH)2D3 appeared after 4 h and accumulated thereafter, whereas 1,25(OH)2D3 synthesis ceased after 7 h, a metabolic pattern unaffected by the concentration of substrate or end products in the perfusate or by addition of cyclic AMP. The model shows promise for studying regulation of 25(OH)D3 metabolism by the kidney.


1987 ◽  
Vol 253 (6) ◽  
pp. F1069-F1076 ◽  
Author(s):  
T. C. Welbourne

Acid-base homeostasis depends on glutamine flow from producer organs to those capable of generating bicarbonate. Glutamine oxidation, the prerequisite metabolic transformation, can be expressed by many sites; however, net base generation requires that glutamine flow be directed to a specific organ, the kidney. Normally, glutamine flows from the periphery to the splanchnic bed, providing a major fuel and supporting ureagenesis. Glutamine flow in chronic metabolic acidosis, on the other hand, is rerouted to the kidneys; asymmetrical distribution of NH+4 and HCO3- into the urine and renal vein subserves restoration of alkaline reserves. Clearly, glutamine flows in accordance with physiological demands, yet little is known of the regulatory mechanisms. As a model, chronic metabolic acidosis alters two aspects of this vital flow, its direction and magnitude. Characteristically the direction of flow is away from the splanchnic bed and into the kidneys associated with a marked fall in arterial glutamine concentration, restoring arterial level returns flow to the splanchnic bed sink. Thus glutamine homeostasis is sacrificed to impart direction to interorgan glutamine flow. Although multiple sites contribute to glutamine homeostasis, of great strategic importance is the potent hepatic glutaminase flux activated by portal venous NH+4 fed forward by gut metabolism; local hydrogen ion concentration modulates the effectiveness of this activator. Acute regulation of flow direction can be exerted by the lungs in determining the prevailing pCO2 and cellular acidity; respiratory compensation in chronic acidosis allows the expression of hepatic glutaminase, thereby suppressing arterial glutamine concentration. The enormous magnitude of glutamine flowing from muscle to the kidneys is supported by adaptive increases in glutamine synthetase and mitochondrial glutaminase, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 260 (5) ◽  
pp. F757-F763 ◽  
Author(s):  
M. Suzuki ◽  
S. Kurihara ◽  
Y. Kawaguchi ◽  
O. Sakai

Vitamin D metabolites exert both acute and chronic influences on proximal tubule function. To further evaluate vitamin D action on the kidney, we examined the immediate effects of vitamin D metabolites on cytoplasmic calcium ion concentration [( Ca2+]i), using fura-2 and patch-clamp method in cultured proximal straight tubule cells of rabbit kidney. 1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] and 25-hydroxyvitamin D3 [25(OH)D3] evoked a transient rise in [Ca2+]i, and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] caused a sustained rise in [Ca2+]i; all effects were dose dependent. [Ca2+]i transient, evoked by 1,25(OH)2D3 alone, was abolished in Ca(2+)-free media. Pretreatment of cells in Ca(2+)-free media with caffeine (4 mM) or ryanodine (1 microM) to deplete Ca2+ store of endoplasmic reticulum or with TMB-8 (5 mM) to block Ca2+ release from storage blunted the effect of 25(OH)D3 on [Ca2+]i but not of 24,25(OH)2D3. Data were also supported by activities of Ca-dependent K channel and show that these three vitamin D metabolites in pharmacological doses increase [Ca2+]i of proximal tubule cells from different sources.


1984 ◽  
Vol 246 (2) ◽  
pp. E168-E173 ◽  
Author(s):  
Y. Tanaka ◽  
H. F. DeLuca

The effects of thyroparathyroidectomy, parathyroid hormone, 1,25-dihydroxyvitamin D3, dietary calcium, dietary phosphorus, age, and sex on the renal 25-hydroxyvitamin D3 1- and 24-hydroxylases measured in vitro in rats have been studied. Thyroparathyroidectomy of vitamin D-deficient rats abolishes 25-hydroxyvitamin D3 1-hydroxylase activity, and administration of bovine parathyroid extract to the thyroparathyroidectomized rat restores diminished 1-hydroxylase activity. Both suppression and restoration of the enzyme activities require many hours (18-24 h) independent of rapid changes in serum calcium and inorganic phosphorus levels in response to these manipulations. Administration of 1,25-dihydroxyvitamin D3 to vitamin D-deficient rats suppresses 25-hydroxyvitamin D3 1-hydroxylase activity and stimulates 25-hydroxyvitamin D3 24-hydroxylase activity within 48 h. Rats maintained on a low-calcium or a low-phosphorus diet with a daily supplement of 20 IU vitamin D3 show high 25-hydroxyvitamin D3 1-hydroxylase activity and low 24-hydroxylase activity as compared with rats similarly treated but fed a diet containing adequate calcium or adequate phosphorus. When vitamin D-sufficient rats having suppressed renal 25-hydroxyvitamin D3 1-hydroxylase activity are placed on a low-calcium vitamin D-deficient diet for 7 days, the 1-hydroxylase activity is greatly stimulated in 6-wk-old rats but much less so in rats with advancing age.


2002 ◽  
Vol 282 (2) ◽  
pp. F341-F351 ◽  
Author(s):  
Tae-Hwan Kwon ◽  
Christiaan Fulton ◽  
Weidong Wang ◽  
Ira Kurtz ◽  
Jørgen Frøkiær ◽  
...  

Several members of the Na-HCO[Formula: see text] cotransporter (NBC) family have recently been identified functionally and partly characterized, including rkNBC1, NBCn1, and NBC3. Regulation of these NBCs may play a role in the maintenance of intracellular pH and in the regulation of renal acid-base balance. However, it is unknown whether the expressions of these NBCs are regulated in response to changes in acid-base status. We therefore tested whether chronic metabolic acidosis (CMA) affects the abundance of these NBCs in kidneys using two conventional protocols. In protocol 1, rats were treated with NH4Cl in their drinking water (12 ± 1 mmol · rat−1 · day−1) for 2 wk with free access to water ( n = 8). Semiquantitative immunoblotting demonstrated that whole kidney abundance of NBCn1 and NBC3 in rats with CMA was dramatically increased to 995 ± 87 and 224 ± 35%, respectively, of control levels ( P < 0.05), whereas whole kidney rkNBC1 was unchanged (88 ± 14%). In protocol 2, rats were given NH4Cl in their food (10 ± 1 mmol · rat−1 · day−1) for 7 days, with a fixed daily water intake ( n = 6). Consistent with protocol 1, whole kidney abundances of NBCn1 (262 ± 42%) and NBC3 (160 ± 31%) were significantly increased compared with controls ( n = 6), whereas whole kidney rkNBC1 was unchanged (84 ± 17%). In both protocols, immunocytochemistry confirmed upregulation of NBCn1 and NBC3 with no change in the segmental distribution along the nephron. Consistent with the increase in NBCn1, measurements of pH transients in medullary thick ascending limb (mTAL) cells in kidney slices revealed two- to threefold increases in DIDS- sensitive, Na+-dependent HCO[Formula: see text] uptake in rats with CMA. In conclusion, CMA is associated with a marked increase in the abundance of NBCn1 in the mTAL and NBC3 in intercalated cells, whereas the abundance of NBC1 in the proximal tubule was not altered. The increased abundance of NBCn1 may play a role in the reabsorption of NH[Formula: see text] in the mTAL and increased NBC3 in reabsorbing HCO[Formula: see text].


1991 ◽  
Vol 2 (1) ◽  
pp. 70-76
Author(s):  
A Fine

A marked increase in oxygen uptake (Qo2) per nephron has been described in the remnant kidney of the rat. However, it is not known which substrates support renal metabolism in remnant kidney nor is it known whether similar changes in Qo2 occur in other species. Remnant kidney in the dog was induced by ligation of 60 to 75% of the renal arterial branches on one side followed 1 to 2 wk later by contralateral nephrectomy. At 3 months marked hypertrophy of the remnant kidney was found and the glomerular filtration rate was 18 +/- 1.8 mL/min compared with 31 +/- 2 in a normal kidney (P less than 0.01). Qo2 was 689 +/- 60 mumol/min/100 mL glomerular filtration rate in the remnant kidney compared with 564 +/- 42 mumol/min/100 mL glomerular filtration rate in the normal kidney (P less than 0.01). Total renal ammoniagenesis per nephron increased to values found in chronic metabolic acidosis although serum (K+) and (HCO3-) were no different than in the normal dog. The oxidation of glutamine and lactate by remnant kidneys accounted for over 80% of Qo2, similar to that of normal kidneys. It is concluded that hypermetabolism per nephron occurs in the remnant kidney of the dog and that glutamine and lactate are the major energy substrates in remnant kidney. Furthermore, factors other than serum (K+) and (HCO3-) augment ammoniagenesis in this model. However, when these results are expressed per whole kidney or per gram of tissue, hypermetabolism does not occur in these remnant kidneys.(ABSTRACT TRUNCATED AT 250 WORDS)


2020 ◽  
pp. 2182-2198
Author(s):  
Julian Seifter

The normal pH of human extracellular fluid is maintained within the range of 7.35 to 7.45. The four main types of acid–base disorders can be defined by the relationship between the three variables, pH, Pco2, and HCO3 –. Respiratory disturbances begin with an increase or decrease in pulmonary carbon dioxide clearance which—through a shift in the equilibrium between CO2, H2O, and HCO3 –—favours a decreased hydrogen ion concentration (respiratory alkalosis) or an increased hydrogen ion concentration (respiratory acidosis) respectively. Metabolic acidosis may result when hydrogen ions are added with a nonbicarbonate anion, A−, in the form of HA, in which case bicarbonate is consumed, or when bicarbonate is removed as the sodium or potassium salt, increasing hydrogen ion concentration. Metabolic alkalosis is caused by removal of hydrogen ions or addition of bicarbonate. Laboratory tests usually performed in pursuit of diagnosis, aside from arterial blood gas analysis, include a basic metabolic profile with electrolytes (sodium, potassium, chloride, bicarbonate), blood urea nitrogen, and creatinine. Calculation of the serum anion gap, which is determined by subtracting the sum of chloride and bicarbonate from the serum sodium concentration, is useful. The normal value is 10 to 12 mEq/litre. An elevated value is diagnostic of metabolic acidosis, helpful in the differential diagnosis of the specific metabolic acidosis, and useful in determining the presence of a mixed metabolic disturbance. Acid–base disorders can be associated with (1) transport processes across epithelial cells lining transcellular spaces in the kidney, gastrointestinal tract, and skin; (2) transport of acid anions from intracellular to extracellular spaces—anion gap acidosis; and (3) intake.


Sign in / Sign up

Export Citation Format

Share Document