Synthesis and release of luteinizing hormone in vitro: manipulations of Ca2+ environment

1985 ◽  
Vol 249 (2) ◽  
pp. E165-E174
Author(s):  
T. C. Liu ◽  
G. L. Jackson

We determined if luteinizing hormone (LH) synthesis is Ca2+ dependent and coupled to LH release. We monitored LH synthesis when LH release was stimulated either by specific [gonadotropin-releasing hormone (GnRH)] or nonspecific stimuli (50 mM K+ and 2 or 20 microM Ca2+ ionophore A23187) and inhibited by Ca2+-reduced medium. LH synthesis was estimated by measuring incorporation of [3H]glucosamine (glycosylation) and [14C]alanine (translation) into total (cell and medium) immunoprecipitable LH by cultured rat anterior pituitary cells. Both GnRH (1 nM) and 50 mM K+ significantly stimulated LH release and glycosylation, but had no effect on LH translation. A23187 also stimulated LH release, but significantly depressed glycosylation of LH and total protein and [14C]alanine uptake. Deletion of Ca2+ from the medium depressed both GnRH-induced LH release and glycosylation. Addition of 0.1 mM EGTA to Ca2+-free medium not only inhibited GnRH-induced release and glycosylation of LH but also uptake of precursors and glycosylation and translation of total protein. Thus glycosylation and release of LH are Ca2+ dependent. Whether parallel changes in LH release and glycosylation reflect a cause and effect relationship remains to be determined.

1983 ◽  
Vol 61 (2) ◽  
pp. 186-189 ◽  
Author(s):  
Noboru Fujihara ◽  
Masataka Shiino

The effect of thyrotrophin-releasing hormone (TRH, 10−7 M) on luteinizing hormone (LH) release from rat anterior pituitary cells was examined using organ and primary cell culture. The addition of TRH to the culture medium resulted in a slightly enhanced release of LH from the cultured pituitary tissues. However, the amount of LH release stimulated by TRH was not greater than that produced by luteinizing hormone – releasing hormone (LH–RH, 10−7 M). Actinomycin D (2 × 10−5 M) and cycloheximide (10−4 M) had an inhibitory effect on the action of TRH on LH release. The inability of TRH to elicit gonadotrophin release from the anterior pituitary glands in vivo may partly be due to physiological inhibition of its action by other hypothalamic factor(s).


1977 ◽  
Vol 75 (2) ◽  
pp. 277-283 ◽  
Author(s):  
N. BARDEN ◽  
A. BETTERIDGE

The addition of luteinizing hormone releasing hormone (LH-RH) to cultures of monolayers of rat anterior pituitary cells was shown to increase both the concentrations of prostaglandins E1 and E2 (PGE) in the cells and the release of LH over similar ranges of concentrations of LH-RH (10−6 to 10−10 mol/l). The peak concentration of PGE was observed after 2·5 h. The stimulation of the level of PGE in the cells by LH-RH was completely inhibited by two inhibitors of prostaglandin synthetase, which only partially inhibited the stimulation of LH release. Therefore the increased concentration of PGE was not obligatory for the effect of LH-RH on LH release. It was also shown that monobutyryl cyclic AMP stimulated the intracellular concentration of PGE and it is suggested that the stimulation of PGE levels may be mediated by increased levels of cyclic AMP in the cells after the addition of LH-RH.


1981 ◽  
Vol 240 (5) ◽  
pp. E504-E509 ◽  
Author(s):  
J. E. Stern ◽  
P. M. Conn

Perifusion of rat hemipituitaries was used as an in vitro model for luteinizing hormone (LH) release in response to gonadotropin-releasing hormone (GnRH). LH release during continuous stimulation with GnRH (10(-7) M) was inhibited by EGTA (1.5 or 5 mM given 1 h prior to GnRH) or by D-600 (methoxyverapamil, 1 mM, given concomitantly with GnRH). These findings suggested that GnRH-stimulated LH release was a Ca2+-dependent process. Inhibition of LH release caused by Ca2+ chelation with EGTA was reversed when hemipituitaries were returned to medium without EGTA. Elevation of medium K+ (to 50 mM, without GnRH) stimulated Ca2+-dependent LH release during the 1st h. GnRH-stimulated LH release was 60% inhibited by cycloheximide (25 micrograms/ml) after the 1st h. LH release was not stimulated by dibutyryladenosine 3',5'-cyclic monophosphate (DBcAMP), although this cyclic nucleotide was shown to have biological activity and to enter pituitary cells as judged by its ability to stimulate prolactin release from the same tissue. The data suggest that optimal LH release in response to GnRH requires extracellular Ca2+ and depends on protein synthesis.


1987 ◽  
Vol 253 (3) ◽  
pp. E233-E237
Author(s):  
R. S. Chuknyiska ◽  
M. R. Blackman ◽  
G. S. Roth

We measured in vitro release of luteinizing hormone (LH) in the presence of 1.5 mM extracellular calcium, with and without LH-releasing hormone (LHRH; 10(-10) to 10(-7) M) or the ionophore A23187 (10(-7) to 10(-4) M), in primary cultures of anterior pituitary cells from intact mature (6 mo) and old (24 mo) male and intact and ovariectomized mature and old female Wistar rats. Base-line as well as LHRH- and A23187-mediated LH secretion was decreased from cells of old rats. However, exposure to A23187 led to a nearly twofold greater augmentation of LH release from cells of old rats, thus decreasing the apparent age-related LH secretory deficit by approximately one-half. We then measured LHRH-mediated (10(-8) M) vs. A23187-mediated (10(-4) M) LH release with and without extracellular calcium (0.08-1.5 mM). For cells from both mature and old rats, there was a similar calcium dependency for A23187- and LHRH-mediated LH release, with optimal LH secretion at 1.0-1.5 mM extracellular calcium concentrations. Again, both LHRH- and A23187-stimulated LH release was significantly lower and exposure to A23187 led to a greater increase in LH release from cells of old rats. Taken together with similar findings in other systems, these data suggest that the in vitro LH secretory defect of pituitary cells from old rats results in part from one or more defects in calcium mobilization and that such alterations may be a widespread manifestation of aging.


1985 ◽  
Vol 249 (4) ◽  
pp. E392-E397
Author(s):  
W. S. Evans ◽  
T. H. Brannagan ◽  
E. R. Limber ◽  
M. J. Cronin ◽  
A. D. Rogol ◽  
...  

The effects of forskolin, an agent which increases intracellular levels of cAMP, on basal luteinizing hormone (LH) and growth hormone (GH) release and on gonadotropin-releasing hormone (GnRH)-stimulated LH release were documented. Continuously perifused dispersed anterior pituitary cells from female rats at random stages of the estrous cycle were used. Secretory rates of both LH and GH increased in a concentration-dependent manner in response to a 1-h challenge with 0.03, 0.1, 0.3, 1, or 3 microM forskolin. In response to 0.3 microM forskolin, maximum GH release was achieved within 15-20 min, after which secretion decreased. In contrast, LH release increased gradually, became maximal at 1.5-2 h, and remained constant until the forskolin was withdrawn. Cells exposed to 10 nM GnRH for 4 h exhibited a biphasic release of LH with the interphase nadir occurring at 30 min. The second phase of LH release was enhanced by simultaneous addition of forskolin with the GnRH. Whereas second phase release did not increase further, exposure of the cells to forskolin for 60 or 120 min before GnRH resulted in increased first-phase LH release. We suggest that, whereas our data are consistent with a role for cAMP in mediating the acute release of GH, cAMP may be involved in the process through which nonimmediately releasable LH becomes available for release.


1995 ◽  
Vol 145 (1) ◽  
pp. 113-119 ◽  
Author(s):  
J J Evans ◽  
S J Hurd ◽  
D R Mason

Abstract Although GnRH is believed to be the primary secretagogue for LH, oxytocin has also been shown to stimulate LH release from the anterior pituitary. We investigated the possibility that the two secretagogues interact in the modulation of LH release. Anterior pituitaries were removed from adult female rats at pro-oestrus, and tissue pieces were pre-incubated in oxytocin for 3 h prior to being stimulated with 15 min pulses of GnRH. LH output over the 1 h period from the beginning of the GnRH pulse was determined. Control incubations were carried out in the absence of oxytocin, and background secretory activities without GnRH stimulation were also determined. Tissue which was pre-exposed to oxytocin (0·012–1·25 μm) had an increased LH response to GnRH (1·25 nm). The increase was larger than the sum of the LH outputs obtained with oxytocin and GnRH separately, revealing that oxytocin synergistically enhanced LH secretion elicited by GnRH (P<0·05; ANOVA). If stimulation by GnRH was delayed for 2 h after incubation with oxytocin, an increase in LH secretion was still observed, indicating that oxytocin-induced modulation did not rapidly disappear. Oxytocin pre-incubation was observed to result in an increase of maximal GnRH-induced LH output (P<0·001; t-test), as well as an increase of intermediate responses. The LH response of the anterior pituitary to subsequent pulses of GnRH was modified by the self-priming process. The effect of oxytocin pretreatment on the response of primed tissue to GnRH was also investigated. It was found that pre-incubation in oxytocin also enhanced the LH response of primed tissue to GnRH. The study has revealed that oxytocin increases the LH output of anterior pituitary tissue in response to GnRH. The effect occurs on both GnRH-primed and unprimed tissues. The results suggest that oxytocin has the potential to regulate the dynamics of the pro-oestrous LH surge. Journal of Endocrinology (1995) 145, 113–119


Sign in / Sign up

Export Citation Format

Share Document