Effect of exercise and recovery on muscle protein synthesis in human subjects

1990 ◽  
Vol 259 (4) ◽  
pp. E470-E476 ◽  
Author(s):  
F. Carraro ◽  
C. A. Stuart ◽  
W. H. Hartl ◽  
J. Rosenblatt ◽  
R. R. Wolfe

Previous studies using indirect means to assess the response of protein metabolism to exercise have led to conflicting conclusions. Therefore, in this study we have measured the rate of muscle protein synthesis in normal volunteers at rest, at the end of 4 h of aerobic exercise (40% maximal O2 consumption), and after 4 h of recovery by determining directly the rate of incorporation of 1,2-[13C]leucine into muscle. The rate of muscle protein breakdown was assessed by 3-methylhistidine (3-MH) excretion, and total urinary nitrogen excretion was also measured. There was an insignificant increase in 3-MH excretion in exercise of 37% and a significant increase (P less than 0.05) of 85% during 4 h of recovery from exercise (0.079 +/- 0.008 vs. 0.147 +/- 0.0338 mumol.kg-1.min-1 for rest and recovery from exercise, respectively). Nonetheless, there was no effect of exercise on total nitrogen excretion. Muscle fractional synthetic rate was not different in the exercise vs. the control group at the end of exercise (0.0417 +/- 0.004 vs. 0.0477 +/- 0.010%/h for exercise vs. control), but there was a significant increase in fractional synthetic rate in the exercise group during the recovery period (0.0821 +/- 0.006 vs. 0.0654 +/- 0.012%/h for exercise vs. control, P less than 0.05). Thus we conclude that although aerobic exercise may stimulate muscle protein breakdown, this does not result in a significant depletion of muscle mass because muscle protein synthesis is stimulated in recovery.

1997 ◽  
Vol 86 (5) ◽  
pp. 1033-1040 ◽  
Author(s):  
Franco Carli ◽  
Dave Halliday

Background Epidural anesthesia with local anesthetics is associated with postoperative attenuation of nitrogen loss. The protein-sparing effect could be the result of either a decreased protein breakdown or increased protein synthesis. Although the role of epidural local anesthetics in effectively limiting the increase in postoperative protein breakdown is established at the whole-body level, it is necessary to determine whether the muscle protein fractional synthetic rate is directly modulated when nociceptive stimuli are blocked. Methods Twelve otherwise healthy patients scheduled for elective colorectal surgery, who were receiving a constant intake of nitrogen (0.1 kg-1.day-1) and calories (20 kcal.kg-1.day-1) before and after surgery, were randomly assigned to receive either general anesthesia (with thiopentone, vecuronium, fentanyl, or enflurane; control group, n = 6) or epidural anesthesia (T3-S5 sensory block with 0.75% bupivacaine) and general anesthesia (epidural group, n = 6). In the control group, postoperative analgesia was achieved with papaveretum given subcutaneously, whereas a continuous epidural bupivacaine infusion (T8-L5 sensory block) was maintained for 48 h in the epidural group. The postabsorptive muscle protein fractional synthetic rate was determined using a 6-h continuous infusion of 13C-labeled leucine (1 mg.kg-1.h-1), and the 13C enrichment in muscle biopsy specimens before surgery and 48 h after surgery was measured. Results Plateau 13C enrichment of plasma alpha-ketoisocaproate (taken to represent the intracellular leucine precursor pool enrichment for protein synthesis) was achieved during the 6-h infusion (mean coefficient of variation was 2.8%). Muscle protein synthesis at 48 h after operation compared with preoperative levels decreased significantly in the control group (P = 0.03). In contrast, it increased by 25% in the epidural group. Although this was not significantly (P = 0.15) different from preoperative levels, it was significantly greater than in the control patients. Conclusions Epidural infusion of local anesthetics begun before surgery and continued during the first 48 h after operation significantly attenuates the decrease in the postabsorptive muscle protein synthesis rate associated with surgical injury. Effective block of nociceptive stimuli thus preserves tissue protein synthesis.


2001 ◽  
Vol 91 (3) ◽  
pp. 1041-1047 ◽  
Author(s):  
G. Parise ◽  
S. Mihic ◽  
D. MacLennan ◽  
K. E. Yarasheski ◽  
M. A. Tarnopolsky

Creatine monohydrate (CrM) supplementation during resistance exercise training results in a greater increase in strength and fat-free mass than placebo. Whether this is solely due to an increase in intracellular water or whether there may be alterations in protein turnover is not clear at this point. We examined the effects of CrM supplementation on indexes of protein metabolism in young healthy men ( n = 13) and women ( n = 14). Subjects were randomly allocated to CrM (20 g/day for 5 days followed by 5 g/day for 3–4 days) or placebo (glucose polymers) and tested before and after the supplementation period under rigorous dietary and exercise controls. Muscle phosphocreatine, creatine, and total creatine were measured before and after supplementation. A primed-continuous intravenous infusion of l-[1-13C]leucine and mass spectrometry were used to measure mixed-muscle protein fractional synthetic rate and indexes of whole body leucine metabolism (nonoxidative leucine disposal), leucine oxidation, and plasma leucine rate of appearance. CrM supplementation increased muscle total creatine (+13.1%, P < 0.05) with a trend toward an increase in phosphocreatine (+8.8%, P = 0.09). CrM supplementation did not increase muscle fractional synthetic rate but reduced leucine oxidation (−19.6%) and plasma leucine rate of appearance (−7.5%, P < 0.05) in men, but not in women. CrM did not increase total body mass or fat-free mass. We conclude that short-term CrM supplementation may have anticatabolic actions in some proteins (in men), but CrM does not increase whole body or mixed-muscle protein synthesis.


2001 ◽  
Vol 26 (6) ◽  
pp. 588-606 ◽  
Author(s):  
Kevin D. Tipton

Although the causes of sarcopenia are multi-factorial, at least some, such as poor nutrition and inactivity, may be preventable. Changes in muscle mass must be a result of net muscle protein breakdown over that particular time period. Stable isotope methodology has been used to examine the metabolic basis of muscle loss. Net muscle protein breakdown may occur due to a decrease in the basal level of muscle protein synthesis. However, changes of this type would likely be of small magnitude and undetectable by current methodology. Hormonal mediators may also be important, especially in association with forced inactivity. Net muscle protein breakdown may be also attributed to alterations in the periods of net muscle protein synthesis and breakdown each day. Reduced activity, combined with ineffectual nutrient intake, could lead to decreased net muscle protein balance. Chronic resistance exercise training clearly is an effective means of increasing muscle mass and strength in elderly individuals. Although sometimes limited, acute metabolic studies provide valuable information for maintenance of muscle mass with age. Key words: sarcopenia, inactivity, strength training, muscle protein synthesis, muscle hypertrophy


GeroScience ◽  
2021 ◽  
Author(s):  
Jessica Cegielski ◽  
Daniel J. Wilkinson ◽  
Matthew S. Brook ◽  
Catherine Boereboom ◽  
Bethan E. Phillips ◽  
...  

AbstractOptimising approaches for measuring skeletal muscle mass and turnover that are widely applicable, minimally invasive and cost effective is crucial in furthering research into sarcopenia and cachexia. Traditional approaches for measurement of muscle protein turnover require infusion of expensive, sterile, isotopically labelled tracers which limits the applicability of these approaches in certain populations (e.g. clinical, frail elderly). To concurrently quantify skeletal muscle mass and muscle protein turnover i.e. muscle protein synthesis (MPS) and muscle protein breakdown (MPB), in elderly human volunteers using stable-isotope labelled tracers i.e. Methyl-[D3]-creatine (D3-Cr), deuterium oxide (D2O), and Methyl-[D3]-3-methylhistidine (D3-3MH), to measure muscle mass, MPS and MPB, respectively. We recruited 10 older males (71 ± 4 y, BMI: 25 ± 4 kg.m2, mean ± SD) into a 4-day study, with DXA and consumption of D2O and D3-Cr tracers on day 1. D3-3MH was consumed on day 3, 24 h prior to returning to the lab. From urine, saliva and blood samples, and a single muscle biopsy (vastus lateralis), we determined muscle mass, MPS and MPB. D3-Cr derived muscle mass was positively correlated to appendicular fat-free mass (AFFM) estimated by DXA (r = 0.69, P = 0.027). Rates of cumulative myofibrillar MPS over 3 days were 0.072%/h (95% CI, 0.064 to 0.081%/h). Whole-body MPB over 6 h was 0.052 (95% CI, 0.038 to 0.067). These rates were similar to previous literature. We demonstrate the potential for D3-Cr to be used alongside D2O and D3-3MH for concurrent measurement of muscle mass, MPS, and MPB using a minimally invasive design, applicable for clinical and frail populations.


2008 ◽  
Vol 99 (3) ◽  
pp. 571-580 ◽  
Author(s):  
René Koopman ◽  
Lex B. Verdijk ◽  
Milou Beelen ◽  
Marchel Gorselink ◽  
Arie Nieuwenhuijzen Kruseman ◽  
...  

Leucine has been suggested to have the potential to modulate muscle protein metabolism by increasing muscle protein synthesis. The objective of this study was to investigate the surplus value of the co-ingestion of free leucine with protein hydrolysate and carbohydrate following physical activity in elderly men. Eight elderly men (mean age 73 ± 1 years) were randomly assigned to two cross-over treatments consuming either carbohydrate and protein hydrolysate (CHO+PRO) or carbohydrate, protein hydrolysate with additional leucine (CHO+PRO+leu) after performing 30 min of standardized physical activity. Primed, continuous infusions with l-[ring-13C6]phenylalanine and l-[ring-2H2]tyrosine were applied, and blood and muscle samples were collected to assess whole-body protein turnover as well as protein fractional synthetic rate in the vastus lateralis muscle over a 6 h period. Whole-body protein breakdown and synthesis rates were not different between treatments. Phenylalanine oxidation rates were significantly lower in the CHO+PRO+leu v. CHO+PRO treatment. As a result, whole-body protein balance was significantly greater in the CHO+PRO+leu compared to the CHO+PRO treatment (23·8 (sem 0·3) v. 23·2 (sem 0·3) μmol/kg per h, respectively; P < 0·05). Mixed muscle fractional synthetic rate averaged 0·081 (sem 0·003) and 0·082 (sem 0·006) %/h in the CHO+PRO+leu and CHO+PRO treatment, respectively (NS). Co-ingestion of leucine with carbohydrate and protein following physical activity does not further elevate muscle protein fractional synthetic rate in elderly men when ample protein is ingested.


2007 ◽  
Vol 292 (6) ◽  
pp. E1534-E1542 ◽  
Author(s):  
Dominic S. C. Raj ◽  
Oladipo Adeniyi ◽  
Elizabeth A. Dominic ◽  
Michel A. Boivin ◽  
Sandra McClelland ◽  
...  

Intradialytic protein catabolism is attributed to loss of amino acids in the dialysate. We investigated the effect of amino acid infusion during hemodialysis (HD) on muscle protein turnover and amino acid transport kinetics by using stable isotopes of phenylalanine, leucine, and lysine in eight patients with end-stage renal disease (ESRD). Subjects were studied at baseline (pre-HD), 2 h of HD without amino acid infusion (HD-O), and 2 h of HD with amino acid infusion (HD+AA). Amino acid depletion during HD-O augmented the outward transport of amino acids from muscle into the vein. Increased delivery of amino acids to the leg during HD+AA facilitated the transport of amino acids from the artery into the intracellular compartment. Increase in muscle protein breakdown was more than the increase in synthesis during HD-O (46.7 vs. 22.3%, P < 0.001). Net balance (nmol·min−1·100 ml −1) was more negative during HD-O compared with pre-HD (−33.7 ± 1.5 vs. −6.0 ± 2.3, P < 0.001). Despite an abundant supply of amino acids, the net balance (−16.9 ± 1.8) did not switch from net release to net uptake. HD+AA induced a proportional increase in muscle protein synthesis and catabolism. Branched chain amino acid catabolism increased significantly from baseline during HD-O and did not decrease during HD+AA. Protein synthesis efficiency, the fraction of amino acid in the intracellular pool that is utilized for muscle protein synthesis decreased from 42.1% pre-HD to 33.7 and 32.6% during HD-O and HD+AA, respectively ( P < 0.01). Thus amino acid repletion during HD increased muscle protein synthesis but did not decrease muscle protein breakdown.


2005 ◽  
Vol 289 (6) ◽  
pp. E999-E1006 ◽  
Author(s):  
Jill A. Bell ◽  
Satoshi Fujita ◽  
Elena Volpi ◽  
Jerson G. Cadenas ◽  
Blake B. Rasmussen

Muscle protein synthesis requires energy and amino acids to proceed and can be stimulated by insulin under certain circumstances. We hypothesized that short-term provision of insulin and nutritional energy would stimulate muscle protein synthesis in healthy subjects only if amino acid availability did not decrease. Using stable isotope techniques, we compared the effects on muscle phenylalanine kinetics across the leg of an amino acid-lowering, high-energy (HE, n = 6, 162 ± 20 kcal/h) hyperglycemic hyperlipidemic hyperinsulinemic clamp with systemic insulin infusion to a low-energy (LE, n = 6, 35 ± 3 kcal/h, P < 0.05 vs. HE) euglycemic hyperinsulinemic clamp with local insulin infusion in the femoral artery. Basal blood phenylalanine concentrations and phenylalanine net balance, muscle protein breakdown, and synthesis (nmol·min−1·100 g leg muscle−1) were not different between groups. During insulin infusion, femoral insulinemia increased to a similar extent between groups and blood phenylalanine concentration decreased 27 ± 3% in the HE group but only 9 ± 2% in the LE group ( P < 0.01 HE vs. LE). Phenylalanine net balance increased in both groups, but the change was greater ( P < 0.05) in the LE group. Muscle protein breakdown decreased in the HE group (58 ± 12 to 35 ± 7 nmol·min−1·100 g leg muscle−1) and did not change in the LE group. Muscle protein synthesis was unchanged in the HE group (39 ± 6 to 30 ± 7 nmol·min−1·100 g leg muscle−1) and increased ( P < 0.05) in the LE group (41 ± 9 to 114 ± 26 nmol·min−1·100 g leg muscle−1). We conclude that amino acid availability is an important factor in the regulation of muscle protein synthesis in response to insulin, as decreased blood amino acid concentrations override the positive effect of insulin on muscle protein synthesis even if excess energy is provided.


2001 ◽  
Vol 11 (s1) ◽  
pp. S164-S169 ◽  
Author(s):  
Robert R. Wolfe

We propose that there is a link between muscle protein synthesis and breakdown that is regulated, in part, through maintenance of the free intracellular pool of essential amino acids. For example, we propose that muscle protein breakdown is paradoxically elevated in the anabolic state following resistance exercise in part because the even greater stimulation of synthesis would otherwise deplete this pool. Thus, factors regulating muscle protein breakdown must be evaluated in the context of the prevailing rate of muscle protein synthesis. Further, the direct effect of factors on breakdown may depend on the physiological state. For example, local hyperinsulinemia suppresses accelerated muscle protein breakdown after exercise, but not normal resting breakdown. Thus, factors regulating muscle protein breakdown in human subjects are complex and interactive.


Author(s):  
Kevin D. Tipton ◽  
Robert R. Wolfe

Exercise has a profound effect on muscle growth, which can occur only if muscle protein synthesis exceeds muscle protein breakdown; there must be a positive muscle protein balance. Resistance exercise improves muscle protein balance, but, in the absence of food intake, the balance remains negative (i.e., catabolic). The response of muscle protein metabolism to a resistance exercise bout lasts for 24-48 hours; thus, the interaction between protein metabolism and any meals consumed in this period will determine the impact of the diet on muscle hypertrophy. Amino acid availability is an important regulator of muscle protein metabolism. The interaction of postexercise metabolic processes and increased amino acid availability maximizes the stimulation of muscle protein synthesis and results in even greater muscle anabolism than when dietary amino acids are not present. Hormones, especially insulin and testosterone, have important roles as regulators of muscle protein synthesis and muscle hypertrophy. Following exercise, insulin has only a permissive role on muscle protein synthesis, but it appears to inhibit the increase in muscle protein breakdown. Ingestion of only small amounts of amino acids, combined with carbohydrates, can transiently increase muscle protein anabolism, but it has yet to be determined if these transient responses translate into an appreciable increase in muscle mass over a prolonged training period.


Sign in / Sign up

Export Citation Format

Share Document