Effects of glucose and insulin on development of impaired insulin action in muscle

1992 ◽  
Vol 262 (4) ◽  
pp. E440-E446 ◽  
Author(s):  
B. F. Hansen ◽  
S. A. Hansen ◽  
T. Ploug ◽  
J. F. Bak ◽  
E. A. Richter

Rat hindquarters were perfused for 2 h with either 0, 5, or 25 mM glucose in combination with either 0, 50, or 20,000 microU insulin/ml, whereupon responsiveness of glucose uptake to 20,000 microU insulin/ml and 25 mM glucose was measured. Perfusion with 25 mM glucose and 20,000 microU insulin/ml resulted in an initial glucose uptake of 43.6 +/- 3.9 mumol.g-1.h-1, which decreased to 18.7 +/- 1.6 mumol.g-1.h-1 after 2 h (P less than 0.001). Omission of glucose from the perfusate prevented the decrease in responsiveness, whereas 5 mM glucose caused a lesser decrease (to 28.3 +/- 2.2 mumol.g-1.h-1). At 0 and 50 microU insulin/ml the effects of glucose were present but were less pronounced. The decrease in insulin responsiveness of glucose uptake (55%) was accompanied by a lesser decrease (29%) in muscle glucose transport, whereas glucose transport in muscle membrane vesicles, muscle insulin binding, and insulin receptor tyrosine kinase activity were unchanged. Muscle glycogen synthase activity decreased (P less than 0.005) during perfusion with 25 mM glucose and 20,000 microU insulin/ml but did not decrease during perfusion with no glucose and 20,000 microU insulin/ml. It is concluded that insulin responsiveness of glucose uptake in muscle is decreased by exposure to glucose in a dose-dependent manner and the inhibitory effect of glucose is enhanced by simultaneous insulin exposure. The mechanism behind this insulin resistance could partly be explained by a decrease in muscle membrane glucose transport, possibly caused by changes in intracellular milieu.

1998 ◽  
Vol 275 (2) ◽  
pp. E272-E277 ◽  
Author(s):  
Xiaoli Chen ◽  
Ellen G. McMahon ◽  
Eric A. Gulve

Lithium has been shown to increase glucose uptake in skeletal muscle and adipose tissues. The therapeutic effect of lithium on bipolar disease is thought to be mediated by its inhibitory effect on myo-inositol-1-monophosphatase (IMPase). We tested the hypothesis that the stimulatory effect of lithium on glucose uptake results from inhibition of IMPase and the resultant accumulation of inositol monophosphates (IP1) by comparing the effects of lithium and a selective IMPase inhibitor, L-690,488, on isolated rat adipocytes. Insulin produced a concentration-dependent stimulation of 2-deoxy-d-[14C]glucose (2-DG) transport (10 μU/ml caused half-maximal activation). Acute exposure to lithium stimulated basal glucose transport activity in a concentration-dependent manner, with a threefold stimulation at 30 mM lithium. Lithium also potentiated insulin-stimulated 2-DG transport. Lithium produced a concomitant increase in IP1 accumulation. In contrast, L-690,488 increased IP1 to levels comparable to those of lithium without stimulatory effects on 2-DG transport. These results demonstrate that stimulatory effects of lithium on glucose transport are not mediated by the inhibition of IMPase and subsequent accumulation of IP1 in rat adipocytes.


1989 ◽  
Vol 257 (6) ◽  
pp. C1128-C1134 ◽  
Author(s):  
P. A. King ◽  
M. F. Hirshman ◽  
E. D. Horton ◽  
E. S. Horton

Skeletal muscle responds to exercise by increasing the rate of glucose uptake. Recent studies have indicated that these changes occur via mechanisms modulating the number of transporters in the plasma membrane and/or transporter intrinsic activity. In the present study, a protocol was developed for measuring the initial rate of glucose uptake by rat hindlimb skeletal muscle plasma membrane vesicles. Membranes were isolated from sedentary (control) and acutely exercised rats, and the initial rates of D- and L-glucose influx were assayed under equilibrium exchange conditions to obtain the kinetic constants for carrier-mediated transport. These values were compared with the values for transporter number measured by cytochalasin B binding, and the carrier turnover numbers were calculated. The maximum velocity (Vmax) for carrier-mediated glucose influx was increased 3.7-fold by exercise, from 3.5 nmol.mg protein-1.s-1 for the membranes from control rats to 13 nmol.mg protein-1.s-1 for the membranes from exercised animals. The mean affinity constant (K0.5; approximately 20 mM) was not different between the two groups. The number of transporters in the plasma membrane was increased to a lesser degree, 5.4 to 9.4 pmol/mg protein. As a result, the average carrier turnover number was increased almost twofold by exercise, 719 s-1 in the controls vs. 1,380 s-1 in the exercised rats. These data indicate that the response of glucose transport to exercise involves an increase in the average carrier intrinsic activity as well as a recruitment of transporters to the plasma membrane. Whether the increase in carrier turnover number is due to activation of the transporters or recruitment of a more “active” form of the carrier is unknown.


2008 ◽  
Vol 198 (3) ◽  
pp. 561-569 ◽  
Author(s):  
Wenbin Shang ◽  
Ying Yang ◽  
Libin Zhou ◽  
Boren Jiang ◽  
Hua Jin ◽  
...  

A series of clinical trials and animal experiments have demonstrated that ginseng and its major active constituent, ginsenosides, possess glucose-lowering action. In our previous study, ginsenoside Rb1 has been shown to regulate peroxisome proliferator-activated receptor γ activity to facilitate adipogenesis of 3T3-L1 cells. However, the effect of Rb1 on glucose transport in insulin-sensitive cells and its molecular mechanism need further elucidation. In this study, Rb1 significantly stimulated basal and insulin-mediated glucose uptake in a time- and dose-dependent manner in 3T3-L1 adipocytes and C2C12 myotubes; the maximal effect was achieved at a concentration of 1 μM and a time of 3 h. In adipocytes, Rb1 promoted GLUT1 and GLUT4 translocations to the cell surface, which was examined by analyzing their distribution in subcellular membrane fractions, and enhanced translocation of GLUT4 was confirmed using the transfection of GLUT4-green fluorescence protein in Chinese Hamster Ovary cells. Meanwhile, Rb1 increased the phosphorylation of insulin receptor substrate-1 and protein kinase B (PKB), and stimulated phosphatidylinositol 3-kinase (PI3K) activity in the absence of the activation of the insulin receptor. Rb1-induced glucose uptake as well as GLUT1 and GLUT4 translocations was inhibited by the PI3K inhibitor. These results suggest that ginsenoside Rb1 stimulates glucose transport in insulin-sensitive cells by promoting translocations of GLUT1 and GLUT4 by partially activating the insulin signaling pathway. These findings are useful in understanding the hypoglycemic and anti-diabetic properties of ginseng and ginsenosides.


1989 ◽  
Vol 66 (2) ◽  
pp. 695-703 ◽  
Author(s):  
K. J. Mikines ◽  
B. Sonne ◽  
P. A. Farrell ◽  
B. Tronier ◽  
H. Galbo

Seven endurance-trained subjects [maximal O2 consumption (VO2max) 64 +/- 1 (SE) ml.min-1.kg-1] were subjected to three sequential hyperinsulinemic euglycemic clamps 15 h after having performed their last training session (T). Results were compared with findings in seven untrained subjects (VO2max 44 +/- 2 ml.min-1.kg-1) studied both at rest (UT) and after 60 min of bicycle exercise at 150 W (UT-ex). In T and UT-ex compared with UT, sensitivity for insulin-mediated whole-body glucose uptake was higher [insulin concentrations eliciting half-maximal glucose uptake being 44 +/- 2 (T) and 43 +/- 4 (UT-ex) vs. 52 +/- 3 microU/ml (UT), P less than 0.05] and responsiveness was higher [13.4 +/- 1.2 (T) and 10.9 +/- 0.7 (UT-ex) vs. 9.5 +/- 0.7 mg.min-1.kg-1 (UT), P less than 0.05]. Furthermore, responsiveness was higher (P less than 0.05) in T than in UT-ex. Insulin-stimulated O2 uptake and maximal glucose oxidation rate were higher in T than in UT and UT-ex. Insulin-stimulated conversion or glucose to glycogen and muscle glycogen synthase was higher in T than in UT and UT-ex. However, glycogen storage in vastus lateralis muscle was found only in UT-ex. No change in any glucoregulatory hormone or metabolite could explain the increased insulin action in trained subjects. It is concluded that physical training induces an adaptive increase in insulin responsiveness of whole-body glucose uptake, which does not reflect increased glycogen deposition in muscle.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 273 (3) ◽  
pp. C1082-C1087 ◽  
Author(s):  
A. D. Lee ◽  
P. A. Hansen ◽  
J. Schluter ◽  
E. A. Gulve ◽  
J. Gao ◽  
...  

beta-Adrenergic stimulation has been reported to inhibit insulin-stimulated glucose transport in adipocytes. This effect has been attributed to a decrease in the intrinsic activity of the GLUT-4 isoform of the glucose transporter that is mediated by phosphorylation of GLUT-4. Early studies showed no inhibition of insulin-stimulated glucose transport by epinephrine in skeletal muscle. The purpose of this study was to determine the effect of epinephrine on GLUT-4 phosphorylation, and reevaluate the effect of beta-adrenergic stimulation on insulin-activated glucose transport, in skeletal muscle. We found that 1 microM epinephrine, which raised adenosine 3',5'-cyclic monophosphate approximately ninefold, resulted in GLUT-4 phosphorylation in rat skeletal muscle but had no inhibitory effect on insulin-stimulated 3-O-methyl-D-glucose (3-MG) transport. In contrast to 3-MG transport, the uptakes of 2-deoxyglucose and glucose were markedly inhibited by epinephrine treatment. This inhibitory effect was presumably mediated by stimulation of glycogenolysis, which resulted in an increase in glucose 6-phosphate concentration to levels known to severely inhibit hexokinase. We conclude that 1) beta-adrenergic stimulation decreases glucose uptake by raising glucose 6-phosphate concentration, thus inhibiting hexokinase, but does not inhibit insulin-stimulated glucose transport and 2) phosphorylation of GLUT-4 has no effect on glucose transport in skeletal muscle.


1987 ◽  
Vol 63 (4) ◽  
pp. 1319-1323 ◽  
Author(s):  
V. A. Koivisto ◽  
H. Yki-Jarvinen

Acute exercise increases insulin binding to its receptors on blood cells. Whether the enhanced insulin binding explains the exercise-induced increase in glucose uptake is unclear, since insulin binding and glucose uptake have not been measured simultaneously in a target tissue of insulin. In this study, we determined insulin binding and the rate of glucose transport in adipocytes obtained by needle biopsy from 10 healthy men before and after 3 h of cycle-ergometric exercise. During the exercise, plasma glucose (P less than 0.01) and insulin (P less than 0.001) fell and serum free fatty acid level rose 4.3-fold (P less than 0.001). 125I-insulin binding to adipocytes remained unchanged during exercise. The rate of basal glucose transport clearance fell from 28.1 +/- 5.7 fl.cell-1.s-1 to 22.9 +/- 5.6 fl.cell-1.s-1 (P less than 0.005), and the insulin-stimulated increase in glucose transport rate rose from 196 +/- 26 to 279 +/- 33% (P less than 0.025) during the exercise. Thus, in the adipocytes during exercise, the basal glucose transport rate and the responsiveness of glucose transport to insulin changed in the absence of alterations in insulin binding. These data indicate that the exercise-induced changes in insulin binding show tissue specificity and do not always parallel alterations in glucose transport.


1992 ◽  
Vol 262 (5) ◽  
pp. E700-E711 ◽  
Author(s):  
T. Ploug ◽  
H. Galbo ◽  
T. Ohkuwa ◽  
J. Tranum-Jensen ◽  
J. Vinten

To study the mechanism of acceleration of glucose transport in skeletal muscle after stimulation with insulin and contractions, we isolated a subcellular vesicular membrane fraction, highly enriched in the plasma membrane enzyme K(+)-stimulated p-nitrophenylphosphatase and also enriched in some intracellular membranes. Protein recovery, morphology, lipid content, marker enzyme activities, total intravesicular volume, Western blot quantitation of GLUT-1, and glucose-inhibitable cytochalasin B binding were identical in membrane fractions from control, insulin-stimulated, contraction-stimulated, and insulin- and contraction-stimulated muscle. Time course of D-[3H]glucose entry in membrane vesicles at equilibrium exchange conditions showed that initial rate of transport at 30 mM of glucose was increased 19-fold and that equilibrium distribution space was increased 4-fold in vesicles from maximum stimulated muscle. The effects of insulin and contractions on initial rate of transport as well as on equilibrium distribution space were additive, and stimulation increased the substrate saturability of glucose transport. Furthermore, cytochalasin B binding to membranes prepared by using less centrifugation time than usual showed that, after stimulation with insulin and contractions, at least 35% of the total number of glucose transporters were redistributed from one kind of vesicles to a more slowly sedimenting kind of vesicles, probably reflecting translocation within the membrane preparation from intracellular vesicles to the plasma membrane upon stimulation. In the present membrane preparation the effects of insulin and/or contractions on glucose transport resemble those seen in intact muscle, and the effects are thus not dependent on cellular integrity.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 252 (2) ◽  
pp. E248-E254
Author(s):  
T. Gremeaux ◽  
J. F. Tanti ◽  
E. Van Obberghen ◽  
Y. Le Marchand-Brustel

Polymyxin B (PMB), a cyclic decapeptide antibiotic, inhibits the hypoglycemic effect of insulin in vivo. To elucidate the mechanism of PMB action, we have studied its effect in vitro on insulin-stimulated pathways in the mouse skeletal muscle. PMB, added to the incubation mixture, specifically inhibited insulin-stimulated 2-deoxyglucose transport and alpha-aminoisobutyric acid uptake in the isolated soleus muscle but did not affect the basal rates of transport (measured in the absence of insulin). PMB did not alter insulin binding and hexokinase activity. PMB effect was observed at all deoxyglucose concentrations tested, and PMB was also able to inhibit vanadate-stimulated glucose transport. By contrast, insulin activation of glycogen synthase was not prevented by PMB. Basal and maximally insulin-stimulated insulin receptor tyrosine kinase activity, tested in a cell-free system, was similar for both autophosphorylation and phosphorylation of exogenous substrates in the absence or in the presence of PMB. Furthermore, the insulin sensitivity of the kinase was increased in the presence of PMB. Our results suggest that the anti-insulin effect of PMB observed in vivo is due to an inhibition of insulin-stimulated glucose transport in the skeletal muscle perhaps through a specific blockade of the insulin-induced translocation of the glucose carriers.


1988 ◽  
Vol 254 (5) ◽  
pp. F711-F718 ◽  
Author(s):  
P. T. Cheung ◽  
M. R. Hammerman

To define the mechanism by which glucose is transported across the basolateral membrane of the renal proximal tubular cell, we measured D-[14C]glucose uptake in basolateral membrane vesicles from rabbit kidney. Na+-dependent D-glucose transport, demonstrable in brush-border vesicles, could not be demonstrated in basolateral membrane vesicles. In the absence of Na+, the uptake of D-[14C]glucose in basolateral vesicles was more rapid than that of L-[3H]glucose over a concentration range of 1-50 mM. Subtraction of the latter from the former uptakes revealed a saturable process with apparent Km of 9.9 mM and Vmax of 0.80 nmol.mg protein-1.s-1. To characterize the transport component of D-glucose uptake in basolateral vesicles, we measured trans stimulation of 2 mM D-[14C]glucose entry in the absence of Na+. Trans stimulation could be effected by preloading basolateral vesicles with D-glucose, 2-deoxy-D-glucose, or 3-O-methyl-D-glucose, but not with L-glucose or alpha-methyl-D-glucoside. Trans-stimulated D-[14C]glucose uptake was inhibited by 0.1 mM phloretin or cytochalasin B but not phlorizin. In contrast, Na+-dependent D-[14C]glucose transport in brush-border vesicles was inhibited by phlorizin but not phloretin or cytochalasin B. Our findings are consistent with the presence of a Na+-independent D-glucose transporter in the proximal tubular basolateral membrane with characteristics similar to those of transporters present in nonepithelial cells.


1989 ◽  
Vol 120 (4) ◽  
pp. 435-441 ◽  
Author(s):  
Hanna Debiec ◽  
Heide S. Cross ◽  
Meinrad Peterlik

Abstract. Jejunal brush-border membrane vesicles were harvested from 4-week old chicks whose thyroid status had been altered either by a daily injection of 20 μg T3 for 1 week or which through the preceding 4 weeks had received propylthiouracil and than had been repleted with either 20 or 80 μg T3 in divided doses within 48 h. T3 markedly stimulated D-glucose uptake in brush-border membrane vesicles in the presence of an outside/inside (100/0 mmol/l) Na+ gradient. T3 administration had no detectable influence on the Na+ permeability of the isolated vesicles. The effect of the thyroid hormone on Na+ gradient-driven D-glucose uptake was fully preserved at zero transmembrane potential difference. These findings exclude that T3 stimulates Na+-dependent D-glucose transport in the small intestine through changes of the electrochemical Na+ gradient or through alteration of the transmembrane potential difference. Tracer exchange experiments under equilibrium and voltageclamp conditions revealed a significantly shorter halftime of D-glucose uptake in brush-border membrane vesicles from T3-treated chicks. Kinetic analysis showed that T3 administration significantly increases the apparent maximal velocity of D-glucose transport in brushborder membrane vesicles, whereas the apparent Km values were virtually unaltered. From these data we conclude that T3 increases the activity of Na+-dependent D-glucose carriers in the brush-border membrane. This is interpreted as consistent with a greater rate of D-glucose absorption from the intestinal lumen under conditions of hyperthyroidism.


Sign in / Sign up

Export Citation Format

Share Document