Regulation of eukaryotic initiation factor-2B activity in muscle of diabetic rats

1993 ◽  
Vol 264 (1) ◽  
pp. E101-E108 ◽  
Author(s):  
A. M. Karinch ◽  
S. R. Kimball ◽  
T. C. Vary ◽  
L. S. Jefferson

Peptide-chain initiation is inhibited in fast-twitch skeletal muscle, but not heart, of diabetic rats. We have investigated mechanisms that might maintain eukaryotic initiation factor (eIF)-2B activity, preventing loss of efficiency of protein synthesis in heart of diabetic rats but not in fast-twitch skeletal muscle. There was no change in the amount or phosphorylation state of eIF-2 in skeletal or cardiac muscle during diabetes. In contrast, eIF-2B activity was decreased in fast-twitch but not slow-twitch muscle from diabetic animals. NADP+ inhibited partially purified eIF-2B in vitro, but addition of equimolar NADPH reversed the inhibition. The NADPH-to-NADP+ ratio was unchanged in fast-twitch muscle after induction of diabetes but was increased in heart of diabetic rats, suggesting that NADPH also prevents inhibition of eIF-2B in vivo. The activity of casein kinase II, which can phosphorylate and activate eIF-2B in vitro, was significantly lower in extracts of fast-twitch, but not cardiac muscle, of diabetic rats compared with controls. The results presented here demonstrate that changes in eIF-2 alpha phosphorylation are not responsible for the effect of diabetes on eIF-2B activity in fast-twitch skeletal muscle. Modulation of casein kinase II activity may be a factor in the regulation of protein synthesis in muscle during acute diabetes. The activity of eIF-2B in heart might be maintained by the increased NADPH/NADP+.

1996 ◽  
Vol 270 (1) ◽  
pp. E43-E50 ◽  
Author(s):  
L. Voisin ◽  
K. Gray ◽  
K. M. Flowers ◽  
S. R. Kimball ◽  
L. S. Jefferson ◽  
...  

Sepsis causes an inhibition of protein synthesis in skeletal muscles composed of fast-twitch fibers, in part, as a result of a decreased activity of the eukaryotic initiation factor 2B (eIF-2B). In the present study, we investigated the expression of two subunits of eIF-2B, i.e., the beta- and epsilon-subunits during sepsis. The expression of both beta- and epsilon-subunits of eIF-2B in gastrocnemius was decreased approximately 50% from control values during the first 5 days after induction of sepsis. The decreased expression of eIF-2B epsilon during sepsis correlated with similar reductions in eIF-2B epsilon mRNA. Restoration of protein synthesis (10 days postsurgery) was associated with a return of eIF-2B epsilon expression to values observed in control rats. Expression of eIF-2B epsilon was not altered in heart during sepsis or in gastrocnemius from nonseptic abscess animals. Amrinone, which ameliorated the inhibition of protein synthesis during sepsis, also prevented the fall in eIF-2B epsilon protein after 5 days of infection. The data provide evidence that expression of eIF-2B epsilon is markedly influenced in gastrocnemius during the course of the septic episode and support the concept that this change is a mechanism responsible for the inhibition of protein synthesis observed under this condition.


2001 ◽  
Vol 268 (20) ◽  
pp. 5375-5385 ◽  
Author(s):  
Linda McKendrick ◽  
Simon J. Morley ◽  
Virginia M. Pain ◽  
Rosemary Jagus ◽  
Bhavesh Joshi

2002 ◽  
Vol 22 (20) ◽  
pp. 7134-7146 ◽  
Author(s):  
Ke Zhan ◽  
Krishna M. Vattem ◽  
Bettina N. Bauer ◽  
Thomas E. Dever ◽  
Jane-Jane Chen ◽  
...  

ABSTRACT Protein synthesis is regulated by the phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α) in response to different environmental stresses. One member of the eIF2α kinase family, heme-regulated inhibitor kinase (HRI), is activated under heme-deficient conditions and blocks protein synthesis, principally globin, in mammalian erythroid cells. We identified two HRI-related kinases from Schizosaccharomyces pombe which have full-length homology with mammalian HRI. The two HRI-related kinases, named Hri1p and Hri2p, exhibit autokinase and kinase activity specific for Ser-51 of eIF2α, and both activities were inhibited in vitro by hemin, as previously described for mammalian HRI. Overexpression of Hri1p, Hri2p, or the human eIF2α kinase, double-stranded-RNA-dependent protein kinase (PKR), impeded growth of S. pombe due to elevated phosphorylation of eIF2α. Cells from strains with deletions of the hri1+ and hri2+ genes, individually or in combination, exhibited a reduced growth rate when exposed to heat shock or to arsenic compounds. Measurements of in vivo phosphorylation of eIF2α suggest that Hri1p and Hri2p differentially phosphorylate eIF2α in response to these stress conditions. These results demonstrate that HRI-related enzymes are not unique to vertebrates and suggest that these eIF2α kinases are important participants in diverse stress response pathways in some lower eukaryotes.


1984 ◽  
Vol 223 (3) ◽  
pp. 687-696 ◽  
Author(s):  
C S Harmon ◽  
C G Proud ◽  
V M Pain

The rate of protein synthesis in skeletal muscle is greatly decreased in response to diabetes and starvation. Analysis of polyribosome profiles indicates that polypeptide-chain initiation is impaired under these conditions. To identify the step in initiation that is affected, we assayed the incorporation of [35S]methionyl-tRNAfMet into [35S]methionyl-tRNAfMet . 40S-ribosomal-subunit initiation complexes in cell-free extracts based on postmitochondrial supernatants prepared from gastrocnemius muscle. Extracts from either starved or diabetic rats were 30-40% less active in forming these complexes compared with those derived from fed or insulin-maintained controls respectively. This change could be reversed by treatment of either starved or diabetic rats with insulin in vivo 30 min before death. Formation of 40S initiation complexes by extracts from either fed or starved rats could be stimulated by the addition of exogenous purified initiation factor eIF-2, but extracts from starved or diabetic rats were more sensitive than controls to stimulation by low concentrations of the factor. These results provide evidence for the acute regulation by insulin of protein synthesis in skeletal muscle at the level of polypeptide-chain initiation, and suggest that in this tissue, as in certain other eukaryotic systems, control of initiation appears to be mediated by changes in the activity of initiation factor eIF-2.


2002 ◽  
Vol 283 (5) ◽  
pp. E1032-E1039 ◽  
Author(s):  
Thomas C. Vary ◽  
Gina Deiter ◽  
Scot R. Kimball

We reported that the inhibition of protein synthesis in skeletal muscle during sepsis correlated with reduced eukaryotic initiation factor eIF2B activity. The present studies define changes in eIF2Bε phosphorylation in gastrocnemius of septic animals. eIF2B kinase activity was significantly elevated 175% by sepsis compared with sterile inflammation, whereas eIF2B phosphatase activity was unaffected. Phosphorylation of eIF2Bε-Ser535 was significantly augmented over 2-fold and 2.5-fold after 3 and 5 days and returned to control values after 10 days of sepsis. Phosphorylation of glycogen synthase kinase-3 (GSK-3), a potential upstream kinase responsible for the elevated phosphorylation of eIF2Bε, was significantly reduced over 36 and 41% after 3 and 5 days and returned to control values after 10 days of sepsis. The phosphorylation of PKB, a kinase thought to directly phosphorylate and inactivate GSK-3, was significantly reduced ∼50% on day 3, but not on days 5 or 10, postinfection compared with controls. Treatment of septic rats with TNF-binding protein prevented the sepsis-induced changes in eIF2Bε and GSK-3 phosphorylation, implicating TNF in mediating the effects of sepsis. Thus increased phosphorylation of eIF2Bε via activation of GSK-3 is an important mechanism to account for the inhibition of skeletal muscle protein synthesis during sepsis. Furthermore, the study presents the first demonstration of changes in eIF2Bε phosphorylation in vivo.


1994 ◽  
Vol 266 (2) ◽  
pp. E193-E201 ◽  
Author(s):  
T. C. Vary ◽  
C. V. Jurasinski ◽  
A. M. Karinch ◽  
S. R. Kimball

Protein synthesis is stimulated at the level of peptide chain initiation in livers from rats with a sterile or septic abscess. In contrast, peptide chain initiation is inhibited in fast-twitch skeletal muscles from septic rats. We investigated the possible mechanisms responsible for these differential changes in peptide chain initiation between liver and skeletal muscle during sepsis by measuring the cellular content of eukaryotic initiation factor-2 (eIF-2), the extent of phosphorylation of the alpha-subunit of eIF-2, and the activity of eIF-2B. In skeletal muscle, neither the eIF-2 content nor the extent of phosphorylation of eIF-2 alpha was altered during sepsis. However, a significant decrease (P < 0.001) in eIF-2B activity was observed in fast-twitch muscles. In liver, neither the extent of phosphorylation of eIF-2 alpha nor the activity of eIF-2B was different in rats with a sterile or septic abscess compared with control. However, the amount of eIF-2 in liver was increased in both sterile inflammation and sepsis. The relative abundance of eIF-2 alpha mRNA was not increased in either condition compared with control. Analysis of the distribution of eIF-2 alpha mRNA from control rats revealed that only approximately 40% of the message was associated with polysomes. Sterile inflammation or sepsis caused a 50% increase in the proportion of eIF-2 alpha mRNA associated with the polysomes compared with control.(ABSTRACT TRUNCATED AT 250 WORDS)


2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Junya Takegaki ◽  
Riki Ogasawara ◽  
Karina Kouzaki ◽  
Satoshi Fujita ◽  
Koichi Nakazato ◽  
...  

Abstract Insufficient duration of recovery between resistance exercise bouts reduces the effects of exercise training, but the influence on muscle anabolic responses is not fully understood. Here, we investigated the changes in the distribution of eukaryotic initiation factor (eIF) 4E, a key regulator of translation initiation, and related factors in mouse skeletal muscle after three successive bouts of resistance exercise with three durations of recovery periods (72 h: conventional, 24 h: shorter, and 8 h: excessively shorter). Bouts of resistance exercise dissociated eIF4E from eIF4E binding protein 1, with the magnitude increasing with shorter recovery. Whereas bouts of resistance exercise with 72 h recovery increased the association of eIF4E and eIF4G, those with shorter recovery did not. Similar results were observed in muscle protein synthesis. These results suggest that insufficient recovery inhibited the association of eIF4E and eIF4G, which might cause attenuation of protein synthesis activation after bouts of resistance exercise.


2001 ◽  
Vol 91 (1) ◽  
pp. 79-84 ◽  
Author(s):  
John C. Kostyak ◽  
Scot R. Kimball ◽  
Leonard S. Jefferson ◽  
Peter A. Farrell

Rates of protein synthesis are reduced in severely diabetic rats. A potential mechanism through which insulin can stimulate protein synthesis is modulation of the activity of eukaryotic initiation factor 2B (eIF2B). The activity of this factor is elevated after exercise in nondiabetic rats but is markedly lower in skeletal muscle from nonexercised severely diabetic rats. We tested the hypothesis that a failure to increase eIF2B activity after exercise is one potential reason for a failure of severely diabetic rats to increase rates of protein synthesis after resistance exercise. Diabetic (partial pancreatectomy, plasma glucose >475 mg/dl) and nondiabetic male Sprague-Dawley rats (∼300 g) performed acute moderate-intensity resistance exercise or remained sedentary. Rates of protein synthesis were higher in nondiabetic rats and increased significantly with exercise, while no elevation was found in severely diabetic rats. The activity of eIF2B was higher ( P < 0.05) in exercised nondiabetic than in sedentary nondiabetic rats (0.096 ± 0.016 and 0.064 ± 0.02 pmol GDP exchanged/min, respectively), but no difference was observed between sedentary and exercised diabetic rats (0.037 ± 0.001 and 0.044 ± 0.008 pmol GDP exchanged/min, respectively), and these activities were lower ( P < 0.05) than in nondiabetic animals. These data suggest that severe hypoinsulinemia is associated with an inability to increase eIF2B activity in response to exercise.


1978 ◽  
Vol 235 (2) ◽  
pp. E126 ◽  
Author(s):  
D E Rannels ◽  
A E Pegg ◽  
S R Rannels ◽  
L S Jefferson

Psoas muscle of rats starved for 2 or 4 days contained increased levels of ribosomal subunits and exhibited reduced rates of protein synthesis in vitro, demonstrating a starvation-induced inhibition of peptide-chain initiation. The activity of an eIF-2-like initiation factor, assayed in postribosomal supernatants, decreased in psoas during starvation, parallel to a 25% reduction in the RNA level. Reduced eIF-2 activity did not result from nucleotide depletion or increased deacylation of initiator tRNA, nor was it abolished by extensive dialysis. Perfusion of psoas muscle in the presence of insulin reversed the starvation-induced block in peptide-chain initiation, but did not alter the activity of eIF-2 or level of RNA. Furthermore, heart muscle did not manifest a starvation-induced block in peptide-chain initiation even though the activity of eIF-2 and the level of RNA decreased as a result of food deprivation. Thus loss of eIF 2 activity in psoas and heart did not parallel changes in peptide-chain initiation but was associated with a reduction in tissue RNA. These results indicate that the level of eIF-2 is not rate-limiting for peptide-chain initiation under the conditions tested in this study.


Sign in / Sign up

Export Citation Format

Share Document