Glucocorticoid regulation of splanchnic glutamine, alanine, glutamate, ammonia, and glutathione fluxes

1993 ◽  
Vol 264 (4) ◽  
pp. E526-E533 ◽  
Author(s):  
B. K. Tamarappoo ◽  
M. Nam ◽  
M. S. Kilberg ◽  
T. C. Welbourne

Interorgan glutamine and associated metabolite fluxes were measured across the gut and liver to delineate splanchnic bed fluxes secondary to enhanced arterial loads mobilized in the periphery by glucocorticoid. Experiments were performed on adrenalectomized rats since adrenalectomy doubled the hepatic glucocorticoid receptor population compared with intact animals. Under these conditions, triamcinolone supplement (40 micrograms.day-1.100 g body wt-1) enhanced the combined net glutamine uptake by gut and liver eightfold, whereas combined gut and liver unidirectional breakdown and synthesis fluxes both increased (3.4- and 7.4-fold, respectively). Triamcinolone supplement also altered the pattern of metabolite released; gut released predominantly ammonium and some alanine, whereas the liver removed more alanine along with glutamine and released more urea, glutamate, and glutathione. Mechanistically, enhanced cellular glutamine uptake could be attributed to a three- to fourfold acceleration of glutamine transport associated with a rise in intracellular glutamine content. However, uptake by isolated membrane vesicles revealed only a small (27%) increase in System N activity, whereas extraction and reconstitution of the transporter into proteoliposomes failed to demonstrate increased transporter activity. Similarly, activity of phosphate-dependent glutaminase and glutamate dehydrogenase increased in crude homogenates (2-fold), but the former disappears in completely disrupted preparations. Furthermore, whereas messenger RNA and assayable enzymic activity for glutamate dehydrogenase clearly increased with glucocorticoid, glutaminase message was less significantly increased. Thus glucocorticoid appears directly capable of accelerating hepatic glutamine extraction primarily by modulating transporter activity that is closely coupled to glutamine utilization.

1991 ◽  
Vol 278 (1) ◽  
pp. 105-111 ◽  
Author(s):  
S Y Low ◽  
P M Taylor ◽  
A Ahmed ◽  
C I Pogson ◽  
M J Rennie

We investigated the effects of glutamine and histidine analogues on glutamine transport processes in membrane vesicles prepared from rat liver (sinusoidal membrane) and skeletal muscle (sarcolemma). L-[14C]Glutamine is transported in these membranes predominantly by Systems N/Nm (liver and muscle respectively), and to a lesser extent by Systems A and L (e.g. about 60, 20 and 20% of total flux respectively via Systems N, A and L at 0.05 mM-glutamine in liver membrane vesicles). The glutamine anti-metabolites 6-diazo-5-oxo-L-norleucine and acivicin were relatively poor inhibitors of glutamine uptake into liver membrane vesicles (less than 25% inhibition at 20-fold excess) and appeared primarily to inhibit System A activity (i.e. N-methylaminoisobutyric acid-inhibitable glutamine uptake). In similar experiments azaserine (also a glutamine anti-metabolite) inhibited approx. 50% of glutamine uptake, apparently by inhibition of System A and also of System L (i.e. 2-amino-2-carboxybicyclo[2,2,1]heptane-inhibitable glutamine uptake). Glutamate gamma-hydroxamate, aspartate beta-hydroxamate, histidine and N'-methylhistidine were all strong inhibitors of glutamine uptake into liver membrane vesicles (greater than 65% inhibition at 20-fold excess), but neither homoglutamine nor N'-methylhistidine produced inhibition. L-Glutamate-gamma-hydroxamate was shown to be a competitive inhibitor of glutamine transport via System N (Ki approximately 0.6 mM). Glutamine uptake in sarcolemmal vesicles showed a similar general pattern of inhibition as in liver membrane vesicles. The results highlight limits on the substrate tolerance of System N; we suggest that the presence of both an L-alpha-amino acid group and a nitrogen group with a delocalized lone-pair of electrons (amide or pyrrole type), separated by a specific intramolecular distance (C2-C4 chain equivalent), is important for substrate recognition by this transporter.


1993 ◽  
Vol 265 (1) ◽  
pp. G90-G98 ◽  
Author(s):  
A. J. Pacitti ◽  
Y. Inoue ◽  
W. W. Souba

In hepatic plasma membrane vesicles (HPMVs) from rat liver, we observed that approximately 40-45% of Na(+)-independent glutamine uptake occurs by a saturable carrier-mediated process. This component of glutamine uptake is mediated by a transport agency distinct from that of previously described systems for the Na(+)-independent transport of amino acids. Transport of glutamine was electroneutral and occurred into an osmotically active space with negligible membrane binding. The model system L substrate 2-amino-2-norbornane-carboxylic acid (BCH) showed no appreciable inhibition of Na(+)-independent glutamine uptake by HPMVs but effectively inhibited the uptake of leucine, a classic system L substrate, in identical vesicle preparations. Further evidence against system L-mediated glutamine transport was provided by the pH dependence and the lack of trans-stimulation of saturable uptake. Competition experiments with selected amino acids revealed a pattern of inhibition of glutamine transport that was inconsistent with assignment of glutamine entry to systems asc, T, or systems for the Na(+)-independent transport of the charged amino acids. This BCH-noninhibitable transport system in HPMVs was highly selective for glutamine, histidine, and, to a lesser extent, asparagine. Inhibition of Na(+)-independent glutamine transport by leucine was noncompetitive in nature. On the basis of Na+ independence, pH sensitivity, absence of trans-stimulation, and an amino acid selectivity similar to that of the previously described hepatic Na(+)-dependent system N, we have provisionally designated the glutamine transport agency described in this article as system "n."


1983 ◽  
Vol 212 (3) ◽  
pp. 713-720 ◽  
Author(s):  
J W Foreman ◽  
R A Reynolds ◽  
K Ginkinger ◽  
S Segal

Glutamine uptake was examined in isolated renal brush-border and basolateral-membrane vesicles from control and acidotic rats. In brush-border vesicles from acidotic animals, there was a significant increase in the initial rate of glutamine uptake compared with that in controls. Lowering the pH of the medium increased the initial rate of glutamine uptake in brush-border vesicles from acidotic, but not from control, rats. In brush-border vesicles from both groups of animals, two saturable transport systems mediated glutamine uptake. There was a 2-fold increase in the Vmax. of the low-affinity high-capacity system in the brush-border vesicles from the acidotic animals compared with that from control animals, with no alteration in the other kinetic parameters. There was no difference in glutamine uptake by the two saturable transport systems in basolateral vesicles from control and acidotic animals. Lowering the incubation-medium pH increased the uptake of glutamine by basolateral vesicles from both control and acidotic rats to a similar extent. The data indicate that during acidosis there are alterations in glutamine transport by both the basolateral and brush-border membrane which could enhance its uptake by the renal-tubule cell for use in ammoniagenesis.


1991 ◽  
Vol 277 (3) ◽  
pp. 687-691 ◽  
Author(s):  
S W Wilde ◽  
M S Kilberg

L-Glutamine, a major energy substrate for intestinal epithelial cells, can be extracted from intraluminal contents across the brush-border membrane and from arterial blood via the basolateral membrane. The purpose of the present study was to characterize glutamine transport by the basolateral membrane of rabbit epithelial cells. Transport of glutamine by isolated basolateral-membrane vesicles was mediated by both Na(+)-dependent and Na(+)-independent carriers. Tests were performed to distinguish glutamine uptake by likely transport agencies, including Systems A, ASC, N, IMINO, NBB, L and asc. The Na(+)-dependent glutamine uptake was strongly inhibited by an excess of 2-(methylamino)isobutyric acid (MeAIB), and glutamine was equally effective in inhibiting MeAIB transport. The reciprocal inhibition analysis, as well as a sensitivity to increased H+ concentration, indicates that Na(+)-dependent glutamine transport across the basolateral membrane is mediated by System A. The saturable Na(+)-independent glutamine transport was markedly inhibited by 2-aminobicyclo-[2,2,1]-heptane-2-carboxylic acid (‘BCH’) and insensitive to changes in assay pH, suggesting uptake via System L rather than System asc. The presence of a Na(+)-dependent carrier to mediate active transport of glutamine across the basolateral membrane is probably essential to ensure a continuous supply of this vital substrate to the enterocyte in the post-absorptive state.


1989 ◽  
Vol 257 (1) ◽  
pp. G80-G85 ◽  
Author(s):  
N. M. Bulus ◽  
N. N. Abumrad ◽  
F. K. Ghishan

The present study characterizes glutamine transport across brush-border membrane vesicles (BBMV) prepared from dog jejunum. The purity of these vesicles was demonstrated by a 20-fold enrichment of leucine aminopeptidase, a marker for BBM. Glutamine uptake was found to occur into an osmotically active space with no membrane binding and to exhibit temperature and pH dependence (optimal uptake at pH 7-7.5). Glutamine uptake was driven by an inwardly directed Na+ gradient with a distinct overshoot not observed under K+ gradient. Lithium could not substitute for Na+ as a stimulator of glutamine uptake. Na+-dependent glutamine uptake was not inhibited by methylaminoisobutyric acid, a typical substrate for system A, and was found to be electrogenic and saturable with a Km of 0.97 +/- 0.58 mM and a Vmax of 3.93 +/- 0.99 nmol.mg protein-1.10 s-1. A Na+-glutamine coupling ratio of 1:1 could be demonstrated by a plot of Hill transformation. Na+-independent glutamine uptake was found to be electroneutral and saturable with a Km of 3.70 +/- 0.66 mM and a Vmax of 2.70 +/- 1.55 nmol.mg protein-1.10 s-1. Inhibition studies confirmed the presence of a Na+-dependent as well as a Na+-independent carrier for glutamine uptake. We conclude that glutamine uptake across dog BBMV occurs via two transport systems: a Na+-dependent high-affinity system similar to the neutral brush-border system and a Na+-independent lower-affinity system similar to system L.


1994 ◽  
Vol 68 (6) ◽  
pp. 4009-4016 ◽  
Author(s):  
M C Ruiz ◽  
S R Alonso-Torre ◽  
A Charpilienne ◽  
M Vasseur ◽  
F Michelangeli ◽  
...  

1991 ◽  
Vol 261 (1) ◽  
pp. G22-G27
Author(s):  
R. M. Salloum ◽  
B. R. Stevens ◽  
W. W. Souba

We examined the alterations in brush-border glutamine transport that occurred in a surgically defunctionalized jejunal limb excluded from mucosal food contact. Dogs were surgically prepared with Roux-en-Y gastrojejunostomies to permit same-intestine comparisons of glutamine transport and glutaminase activity in jejunal segments that were in incontinuity or excluded for a 6-mo period. Transport of glutamine, alanine, and glucose was measured in brush-border membrane vesicles prepared from each intestinal section; membrane marker enzymes were enriched to the same degree in incontinuity and excluded portions. The Na(+)-dependent glutamine cotransport apparent Km was the same in the excluded (779 +/- 63 microM) and incontinuity (873 +/- 105 microM) limbs. However, the Jmax for Na(+)-independent glutamine transport in the incontinuity jejunum (158.7 +/- 15.7 pmol.mg protein-1.s-1) was double that in the excluded limb (71.2 +/- 4.6 pmol.mg protein-1.s-1). Na(+)-dependent carrier-mediated glutamine transport rates were lower than the Na(+)-dependent system, but Na(+)-independent kinetic parameters were not significantly different in incontinuity vs. excluded limbs (Jmax 7.9 +/- 0.6 pmol.mg protein-1.s-1; Km 140 +/- 20 microM). Similarly, the passive diffusion permeability coefficient was the same for both excluded and incontinuity jejunal limbs (22.7 +/- 0.9 nl.mg protein-1.s-1). Mucosal glutaminase enzyme activity was increased by 28% in the incontinuity limb (4.32 +/- 0.21 vs. 3.36 +/- 0.35 mumol.mg protein-1.h-1; P less than 0.02). Transport rates of alanine and glucose were also diminished in the excluded limb (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document