Ca2+ deficiency, selective alpha-glucosidehydrolase inhibition, and insulin secretion

1993 ◽  
Vol 265 (1) ◽  
pp. E1-E9 ◽  
Author(s):  
A. Salehi ◽  
I. Lundquist

We investigated the relation between activities of islet glycogenolytic alpha-glucosidehydrolases and insulin secretion induced by glucose and 3-isobutyl-1-methylxanthine (IBMX) by means of suppressing 1) insulin release (Ca2+ deficiency) and 2) islet alpha-glucosidehydrolase activity (selective inhibition by the deoxynojirimycin derivative miglitol). Additionally, the in vivo insulin response to both secretagogues was examined. We observed that, similar to glucose-induced insulin release, islet glycogenolytic hydrolases (acid amyloglucosidase, acid alpha-glucosidase) were highly Ca2+ dependent. Acid phosphatase, N-acetyl-beta-D-glucosaminidase, or neutral alpha-glucosidase (endoplasmic reticulum) was not influenced by Ca2+ deficiency. In Ca2+ deficiency IBMX-induced insulin release was unaffected and was accompanied by reduced activities of islet alpha-glucosidehydrolases. Miglitol strongly inhibited glucose-induced insulin release concomitant with a marked suppression of islet alpha-glucosidehydrolase activities. Direct addition of miglitol to islet homogenates suppressed acid amyloglucosidase [half-maximal effective concentration (EC50) approximately 10(-6) M] and acid alpha-glucosidase. Acid phosphatase and N-acetyl-beta-D-glucosaminidase were unaffected. The miglitol-induced inhibition of glucose-stimulated insulin release was dose dependent (EC50 approximately 10(-6) M) and displayed a remarkable parallelism with the inhibition curve for acid amyloglucosidase. The in vivo insulin secretory response to glucose was markedly reduced in dystrophic mice (low amyloglucosidase), whereas the response to IBMX was unaffected. In summary, islet glycogenolytic hydrolases are Ca2+ dependent, and acid amyloglucosidase is directly involved in the multifactorial process of glucose-induced insulin release. In contrast the mechanisms of IBMX-stimulated insulin secretion operate independently of these enzymes. The effects of miglitol, a drug currently used in diabetes therapy, deserves further investigation.

1993 ◽  
Vol 138 (3) ◽  
pp. 391-400 ◽  
Author(s):  
A. Salehi ◽  
I. Lundquist

ABSTRACT In previous in-vivo studies we have presented indirect evidence for the involvement of islet acid glucan-1,4-α-glucosidase (acid amyloglucosidase), a lysosomal glycogen-hydrolysing enzyme, in certain insulin secretory processes. In the present combined in-vitro and in-vivo investigation, we studied whether differential changes in islet acid amyloglucosidase activity were related to the insulin secretory response induced by two mechanistically different secretagogues, glucose and isobutylmethylxanthine (IBMX). It was observed that addition of the selective α-glucosidehydrolase inhibitor emiglitate (1 mmol/l) to isolated pancreatic islets resulted in a marked reduction of glucose-induced insulin release. This was accompanied by a pronounced suppression of islet activities of acid amyloglucosidase and acid α-glucosidase, whereas other lysosomal enzyme activities, such as acid phosphatase and N-acetyl-β-d-glucosaminidase, were unaffected. Furthermore, islets first incubated with emiglitate in the presence of high (16·7 mmol/l) glucose released less insulin than untreated controls in response to glucose in a second incubation period in the absence of emiglitate. In contrast, IBMX-induced insulin release was not influenced by emiglitate although accompanied by a marked reduction of islet activities of all three α-glucosidehydrolases. Basal insulin secretion (1 mmol glucose/1) was unaffected in the presence of emiglitate. In-vivo pretreatment of mice with highly purified fungal amyloglucosidase ('enzyme replacement'), a procedure known to increase islet amyloglucosidase activity, resulted in a greatly enhanced insulin secretory response to an i.v. glucose load. The increase in insulin release was accompanied by a markedly improved glucose tolerance curve in these animals. In contrast, enzyme pretreatment did not influence the insulin response or the blood glucose levels after an i.v. injection of IBMX. The data lend further support to our hypothesis that islet acid amyloglucosidase is involved in the multifactorial insulin secretory processes induced by glucose but not in those involving direct activation of the cyclic AMP system. The results also indicate separate, or at least partially separate, pathways for insulin release induced by glucose and IBMX. Journal of Endocrinology (1993) 138, 391–400


1995 ◽  
Vol 268 (2) ◽  
pp. E336-E342 ◽  
Author(s):  
A. C. Boschero ◽  
M. Szpak-Glasman ◽  
E. M. Carneiro ◽  
S. Bordin ◽  
I. Paul ◽  
...  

cDNAs encoding for M1 and M3 muscarinic acetylcholine (ACh) receptors were detected in rat pancreatic islet cells by polymerase chain reaction (PCR) amplification techniques. A new cholinergic agonist, oxotremorine-m (oxo-m), in the presence of glucose (5.6 mM), produced a dose-dependent potentiation of insulin secretion saturating at approximately 5 microM. This effect was suppressed by the L-type Ca2+ channel blocker nifedipine. Higher doses of oxo-m (50 microM) induced a biphasic insulin response both at low (5.6 mM) or high (16.7 mM) glucose concentrations. In a Ca(2+)-deficient medium containing glucose (5.6 mM), oxo-m evoked only a reduced first phase of insulin secretion. The potentiating effects of oxo-m were inhibited by the muscarinic receptor antagonists 4-diphenylacetoxy-N-methylpiperidine methiodide (M3), hexahydro-sila-difenidol hydrochloride, p-fluoro analogue (M3 > M1 > M2), and pirenzepine (M1) in a dose-dependent manner; half-maximal inhibitory concentration values were approximately 5, 20, and 340 nM, respectively. The PCR results demonstrate the presence of M1 and M3 muscarinic ACh receptors in the islet tissue, and the secretion data strongly suggest that the potentiation of glucose-induced insulin release evoked by oxo-m depends on the activation of a muscarinic M3-subtype receptor present in the beta-cell membrane.


1990 ◽  
Vol 258 (4) ◽  
pp. E643-E648 ◽  
Author(s):  
B. J. Billaudel ◽  
A. G. Faure ◽  
B. C. Sutter

Insulin release is impaired by vitamin D3 deficiency but can be restored by in vivo administration of 1,25 dihydroxyvitamin D3 [1,25(OH)2D3]. A direct influence of 1,25(OH)2D3 on the B-cell was studied in vitro with islets from 5-wk vitamin D3-deprived rats. This hormone (10(-12) to 10(-6) mol/l) added to the incubation medium had a stimulatory dose-dependent effect on insulin response to 8.3 mmol/l glucose 6 h later. Moreover, perifusion experiments performed after different times of incubation demonstrated that after 6 h 1,25(OH)2D3 increased in particular the first phase of insulin response to 16.7 mmol/l glucose. The 45Ca fluxes, followed in parallel, were never modified by 1,25(OH)2D3 in the absence of glucose but were enhanced during the glucose stimulus, whereas 86Rb fluxes were never affected by 1,25(OH)2D3. These results demonstrated that 1,25(OH)2D3 acts in vitro on B-cells, but with a 6-h delay to potentiate the glucose-induced insulin release, concomitant with intracellular calcium redistribution.


1993 ◽  
Vol 71 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Catherine B. Chan ◽  
Ruth M. MacPhail ◽  
Katherine Mitton

The hypothesis that a defect in glucose sensing by islets of fa/fa Zucker rats contributes to hyperinsulinemia in these animals was tested. Islets from lean and fa/fa rats were isolated by collagenase digestion and step-density gradient purification and then cultured overnight in Dulbecco's modified Eagle's medium containing 12.5 mM glucose. Obese rat islets were more sensitive to hypoglycemic glucose levels with half-maximal effective concentration (EC50) of 5.6 mM compared with an EC50 of 8.2 mM for lean rat islets. In contrast, responsiveness of both phenotypes to α-ketoisocaproate and quinine was similar. Mannoheptulose did not inhibit insulin secretion from fa/fa islets, although inhibitors of later events in the stimulus–secretion coupling pathway were normally inhibited by iodoacetate and diazoxide. Finally, starvation in vivo and culture of islets in low glucose concentrations (5 mM) in vitro both decreased glucose-stimulated insulin secretion from lean but not fa/fa rat islets. We conclude that fa/fa rat islets have an exaggerated insulin response to hypoglycemic stimuli, possibly as a result of a defect in B-cell glucokinase function.Key words: insulin secretion, obesity, glucose metabolism, starvation.


2007 ◽  
Vol 192 (2) ◽  
pp. 389-394 ◽  
Author(s):  
Nguyen Khanh Hoa ◽  
Åke Norberg ◽  
Rannar Sillard ◽  
Dao Van Phan ◽  
Nguyen Duy Thuan ◽  
...  

We recently showed that phanoside, a gypenoside isolated from the plant Gynostemma pentaphyllum, stimulates insulin secretion from rat pancreatic islets. To study the mechanisms by which phanoside stimulates insulin secretion. Isolated pancreatic islets of normal Wistar (W) rats and spontaneously diabetic Goto-Kakizaki (GK) rats were batch incubated or perifused. At both 3.3 and 16.7 mM glucose, phanoside stimulated insulin secretion several fold in both W and diabetic GK rat islets. In perifusion of W islets, phanoside (75 and 150 μM) dose dependently increased insulin secretion that returned to basal levels when phanoside was omitted. When W rat islets were incubated at 3.3 mM glucose with 150 μM phanoside and 0.25 mM diazoxide to keep K-ATP channels open, insulin secretion was similar to that in islets incubated in 150 μM phanoside alone. At 16.7 mM glucose, phanoside-stimulated insulin secretion was reduced in the presence of 0.25 mM diazoxide (P<0.01). In W islets depolarized by 50 mM KCl and with diazoxide, phanoside stimulated insulin release twofold at 3.3 mM glucose but did not further increase the release at 16.7 mM glucose. When using nimodipine to block L-type Ca2+ channels in B-cells, phanoside-induced insulin secretion was unaffected at 3.3 mM glucose but decreased at 16.7 mM glucose (P<0.01). Pretreatment of islets with pertussis toxin to inhibit exocytotic Ge-protein did not affect insulin response to 150 μM phanoside. Phanoside stimulated insulin secretion from Wand GK rat islets. This effect seems to be exerted distal to K-ATP channels and L-type Ca2+ channels, which is on the exocytotic machinery of the B-cells.


Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1441-1450 ◽  
Author(s):  
Isabel García-Tornadú ◽  
Ana M. Ornstein ◽  
Astrid Chamson-Reig ◽  
Michael B. Wheeler ◽  
David J. Hill ◽  
...  

The relationship between antidopaminergic drugs and glucose has not been extensively studied, even though chronic neuroleptic treatment causes hyperinsulinemia in normal subjects or is associated with diabetes in psychiatric patients. We sought to evaluate dopamine D2 receptor (D2R) participation in pancreatic function. Glucose homeostasis was studied in D2R knockout mice (Drd2−/−) mice and in isolated islets from wild-type and Drd2−/− mice, using different pharmacological tools. Pancreas immunohistochemistry was performed. Drd2−/− male mice exhibited an impairment of insulin response to glucose and high fasting glucose levels and were glucose intolerant. Glucose intolerance resulted from a blunted insulin secretory response, rather than insulin resistance, as shown by glucose-stimulated insulin secretion tests (GSIS) in vivo and in vitro and by a conserved insulin tolerance test in vivo. On the other hand, short-term treatment with cabergoline, a dopamine agonist, resulted in glucose intolerance and decreased insulin response to glucose in wild-type but not in Drd2−/− mice; this effect was partially prevented by haloperidol, a D2R antagonist. In vitro results indicated that GSIS was impaired in islets from Drd2−/− mice and that only in wild-type islets did dopamine inhibit GSIS, an effect that was blocked by a D2R but not a D1R antagonist. Finally, immunohistochemistry showed a diminished pancreatic β-cell mass in Drd2−/− mice and decreased β-cell replication in 2-month-old Drd2−/− mice. Pancreatic D2Rs inhibit glucose-stimulated insulin release. Lack of dopaminergic inhibition throughout development may exert a gradual deteriorating effect on insulin homeostasis, so that eventually glucose intolerance develops.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Minglin Pan ◽  
Guang Yang ◽  
Xiuli Cui ◽  
Shao-Nian Yang

The pancreatic β cell harbors α2-adrenergic and glucagon-like peptide-1 (GLP-1) receptors on its plasma membrane to sense the corresponding ligands adrenaline/noradrenaline and GLP-1 to govern glucose-stimulated insulin secretion. However, it is not known whether these two signaling systems interact to gain the adequate and timely control of insulin release in response to glucose. The present work shows that the α2-adrenergic agonist clonidine concentration-dependently depresses glucose-stimulated insulin secretion from INS-1 cells. On the contrary, GLP-1 concentration-dependently potentiates insulin secretory response to glucose. Importantly, the present work reveals that subthreshold α2-adrenergic activation with clonidine counteracts GLP-1 potentiation of glucose-induced insulin secretion. This counteractory process relies on pertussis toxin- (PTX-) sensitive Gi proteins since it no longer occurs following PTX-mediated inactivation of Gi proteins. The counteraction of GLP-1 potentiation of glucose-stimulated insulin secretion by subthreshold α2-adrenergic activation is likely to serve as a molecular mechanism for the delicate regulation of insulin release.


1983 ◽  
Vol 245 (6) ◽  
pp. E591-E597 ◽  
Author(s):  
D. Giugliano ◽  
P. Di Pinto ◽  
R. Torella ◽  
N. Frascolla ◽  
F. Saccomanno ◽  
...  

These studies were undertaken to evaluate in humans the possible physiological role of prostaglandins of the E series (PGE) in modulating insulin release and to assess whether endogenous PGE synthesis may account for the biphasic pattern of insulin secretion. We used a square-wave glucose stimulation previously determined to give maximal biphasic insulin release. Infusion of lysine acetylsalicylate to block the synthesis of endogenous PGE increased by twofold total insulin response to glucose and also converted insulin release to a multiphasic pattern. The infusion of exogenous PGE1 (0.2 microgram X kg-1 X min-1) or PGE2 (10 micrograms/min) in addition to lysine acetylsalicylate restored the typical biphasic pattern of insulin release and also decreased total insulin release to values similar to those of control studies. Infusion of either PGE1 or PGE2 in the absence of lysine acetylsalicylate reset insulin secretion to a lower level without altering the kinetics of release. On the basis of these results, it is hypothesized that endogenous PGE released in response to glucose stimulation exert an inhibiting effect on insulin release that becomes biphasic in appearance.


Endocrinology ◽  
2004 ◽  
Vol 145 (7) ◽  
pp. 3190-3196 ◽  
Author(s):  
Bo Ahrén ◽  
Giovanni Pacini ◽  
David Wynick ◽  
Nils Wierup ◽  
Frank Sundler

Abstract The neuropeptide galanin is expressed in sympathetic nerve terminals that surround islet cells and inhibits insulin secretion. To explore its role for islet function, we studied mice with a loss-of-function mutation in the galanin gene [galanin knockout (KO) mice]. Intravenous 2-deoxy-glucose, which activates both the sympathetic and parasympathetic branches of the autonomic nervous system, caused an initial (1–5 min) inhibition of insulin secretion that was impaired in galanin KO mice (P = 0.027), followed by a subsequent stimulation of insulin secretion that was augmented in galanin KO mice (P &lt; 0.01). Similar effects were seen after chemical sympathectomy by 6-hydroxydopamine. In contrast, galanin KO mice had a reduced insulin response to glucose, both in vivo (P &lt; 0.001) and in isolated islets (P &lt; 0.001), and to arginine, both in vivo (P = 0.012) and in vitro (P = 0.018). During an iv glucose tolerance test, galanin KO mice had impaired glucose disposal (P = 0.005) due to a reduced insulin response (P &lt; 0.001) and a reduced insulin-independent glucose elimination (glucose effectiveness; P = 0.040). Insulin sensitivity, as judged by a euglycemic, hyperinsulinemic clamp technique, was slightly increased in galanin KO mice (P = 0.032). We conclude that 1) galanin may contribute to sympathetic influences inhibiting insulin secretion in mice, and 2) galanin KO mice have a reduced glucose-induced insulin secretion.


1986 ◽  
Vol 251 (1) ◽  
pp. E86-E91 ◽  
Author(s):  
M. T. Bihoreau ◽  
A. Ktorza ◽  
A. Kervran ◽  
L. Picon

The effects of gestational hyperglycemia on B-cell function were studied in near-term fetuses from unrestrained pregnant rats made slightly or highly hyperglycemic using continuous glucose infusion during the last week of pregnancy. Pancreatic and plasma insulin and insulin secretion in vitro were studied in the fetuses. Compared with controls, slightly hyperglycemic fetuses showed increased pancreatic and plasma insulin concentrations and similar insulin release in response to glucose in vitro. In highly hyperglycemic fetuses, pancreatic and plasma insulin concentrations were unchanged compared with controls, and insulin release in vitro was insensitive to glucose and to the mixture glucose plus theophylline. These results confirm that glucose is able to stimulate insulin secretion in normal or slightly hyperglycemic fetuses and suggest that severe hyperglycemia per se, without association of other metabolic disorders or toxic injuries, profoundly alters the stimulus-secretion coupling of the fetal rat B-cell.


Sign in / Sign up

Export Citation Format

Share Document