Oral amino acids stimulate muscle protein anabolism in the elderly despite higher first-pass splanchnic extraction

1999 ◽  
Vol 277 (3) ◽  
pp. E513-E520 ◽  
Author(s):  
Elena Volpi ◽  
Bettina Mittendorfer ◽  
Steven E. Wolf ◽  
Robert R. Wolfe

Muscle protein synthesis and breakdown and amino acid transport were measured in 7 healthy young (30 ± 2 yr) and 8 healthy elderly (71 ± 2 yr) volunteers in the postabsorptive state and during the oral administration of an amino acid mixture withl-[ ring-2H5]phenylalanine infusion, femoral artery and vein catheterization, and muscle biopsies. Phenylalanine first-pass splanchnic extraction was measured by addingl-[ ring-13C6]phenylalanine to the mixture. In the postabsorptive state, no differences in muscle amino acid kinetics were detected between young and elderly volunteers. Phenylalanine first-pass splanchnic extraction was significantly higher in the elderly ( P < 0.003) during ingestion of amino acids, but the delivery to the leg increased to the same extent in both groups. Phenylalanine transport into the muscle, muscle protein synthesis, and net balance increased significantly ( P < 0.01) and similarly in both the young and the elderly. We conclude that, despite an increased splanchnic first-pass extraction, muscle protein anabolism can be stimulated by oral amino acids in the elderly as well as in the young.

1997 ◽  
Vol 273 (1) ◽  
pp. E122-E129 ◽  
Author(s):  
G. Biolo ◽  
K. D. Tipton ◽  
S. Klein ◽  
R. R. Wolfe

Six normal untrained men were studied during the intravenous infusion of a balanced amino acid mixture (approximately 0.15 g.kg-1.h-1 for 3 h) at rest and after a leg resistance exercise routine to test the influence of exercise on the regulation of muscle protein kinetics by hyperaminoacidemia. Leg muscle protein kinetics and transport of selected amino acids (alanine, phenylalanine, leucine, and lysine) were isotopically determined using a model based on arteriovenous blood samples and muscle biopsy. The intravenous amino acid infusion resulted in comparable increases in arterial amino acid concentrations at rest and after exercise, whereas leg blood flow was 64 +/- 5% greater after exercise than at rest. During hyperaminoacidemia, the increases in amino acid transport above basal were 30-100% greater after exercise than at rest. Increases in muscle protein synthesis were also greater after exercise than at rest (291 +/- 42% vs. 141 +/- 45%). Muscle protein breakdown was not significantly affected by hyperminoacidemia either at rest or after exercise. We conclude that the stimulatory effect of exogenous amino acids on muscle protein synthesis is enhanced by prior exercise, perhaps in part because of enhanced blood flow. Our results imply that protein intake immediately after exercise may be more anabolic than when ingested at some later time.


2000 ◽  
Vol 278 (2) ◽  
pp. E273-E279 ◽  
Author(s):  
Melinda Sheffield-Moore ◽  
Robert R. Wolfe ◽  
Dennis C. Gore ◽  
Steven E. Wolf ◽  
Dennis M. Ferrer ◽  
...  

We investigated whether the normal anabolic effects of acute hyperaminoacidemia were maintained after 5 days of oxandrolone (Oxandrin, Ox)-induced anabolism. Five healthy men [22 ± 3 (SD) yr] were studied before and after 5 days of oral Ox (15 mg/day). In each study, a 5-h basal period was followed by a 3-h primed-continuous infusion of a commercial amino acid mixture (10% Travasol). Stable isotopic data from blood and muscle sampling were analyzed using a three-compartment model to calculate muscle protein synthesis and breakdown. Model-derived muscle protein synthesis increased after amino acid infusion in both the control [basal control (BC) vs. control + amino acids (C+AA); P < 0.001] and Ox study [basal Ox (BOx) vs. Ox + amino acids (Ox+AA); P < 0.01], whereas protein breakdown was unchanged. Fractional synthetic rates of muscle protein increased 94% (BC vs. C+AA; P = 0.01) and 53% (BOx vs. Ox+AA; P < 0.01), respectively. We conclude that the normal anabolic effects of acute hyperaminoacidemia are maintained in skeletal muscle undergoing oxandrolone-induced anabolism.


2013 ◽  
Vol 110 (6) ◽  
pp. 981-987 ◽  
Author(s):  
Atsushi Kanda ◽  
Kyosuke Nakayama ◽  
Tomoyuki Fukasawa ◽  
Jinichiro Koga ◽  
Minoru Kanegae ◽  
...  

It is well known that ingestion of a protein source is effective in stimulating muscle protein synthesis after exercise. In addition, there are numerous reports on the impact of leucine and leucine-rich whey protein on muscle protein synthesis and mammalian target of rapamycin (mTOR) signalling. However, there is only limited information on the effects of whey protein hydrolysates (WPH) on muscle protein synthesis and mTOR signalling. The aim of the present study was to compare the effects of WPH and amino acids on muscle protein synthesis and the initiation of translation in skeletal muscle during the post-exercise phase. Male Sprague–Dawley rats swam for 2 h to depress muscle protein synthesis. Immediately after exercise, the animals were administered either carbohydrate (CHO), CHO plus an amino acid mixture (AA) or CHO plus WPH. At 1 h after exercise, the supplements containing whey-based protein (AA and WPH) caused a significant increase in the fractional rate of protein synthesis (FSR) compared with CHO. WPH also caused a significant increase in FSR compared with AA. Post-exercise ingestion of WPH caused a significant increase in the phosphorylation of mTOR levels compared with AA or CHO. In addition, WPH caused greater phosphorylation of ribosomal protein S6 kinase and eukaryotic initiation factor 4E-binding protein 1 than AA and CHO. In contrast, there was no difference in plasma amino acid levels following supplementation with either AA or WPH. These results indicate that WPH may include active components that are superior to amino acids for stimulating muscle protein synthesis and initiating translation.


2002 ◽  
Vol 283 (5) ◽  
pp. E909-E916 ◽  
Author(s):  
Renan A. Orellana ◽  
Pamela M. J. O'Connor ◽  
Hanh V. Nguyen ◽  
Jill A. Bush ◽  
Agus Suryawan ◽  
...  

Protein synthesis in skeletal muscle is reduced by as much as 50% as early as 4 h after a septic challenge in adults. However, the effect of sepsis on muscle protein synthesis has not been determined in neonates, a highly anabolic population whose muscle protein synthesis rates are elevated and uniquely sensitive to insulin and amino acid stimulation. Neonatal piglets ( n = 10/group) were infused for 8 h with endotoxin [lipopolysaccharide (LPS), 0 and 10 μg · kg−1 · h−1]. Plasma amino acid and glucose concentrations were kept at the fed level by infusion of dextrose and a balanced amino acid mixture. Fractional protein synthesis rates were determined by use of a flooding dose of [3H]phenylalanine. LPS infusion produced a septic-like state, as indicated by an early and sustained elevation in body temperature, heart rate, and plasma tumor necrosis factor-α, interleukin-1, cortisol, and lactate concentrations. Plasma levels of insulin increased, whereas glucose and amino acids decreased, suggesting the absence of insulin resistance. LPS significantly reduced protein synthesis in longissimus dorsi muscle by only 11% and in gastrocnemius by only 15%, but it had no significant effect in masseter and cardiac muscles. LPS increased protein synthesis in the liver (22%), spleen (28%), kidney (53%), jejunum (19%), diaphragm (21%), lung (50%), and skin (13%), but not in the stomach, pancreas, or brain. These findings suggest that, when substrate supply is maintained, skeletal muscle protein synthesis in neonates compared with adults is relatively resistant to the catabolic effects of sepsis.


2001 ◽  
Vol 280 (4) ◽  
pp. E570-E575 ◽  
Author(s):  
Wen Long ◽  
Liping Wei ◽  
Eugene J. Barrett

Glucocorticoids inhibit protein synthesis in muscle. In contrast, insulin and amino acids exert anabolic actions that arise in part from their ability to phosphorylate ribosomal p70 S6-kinase (p70S6k) and eukaryotic initiation factor (eIF)4E binding protein (BP)1 (PHAS-I), proteins that regulate translation initiation. Whether glucocorticoids interfere with this action was examined by giving rats either dexamethasone (DEX, 300 μg · kg−1 · day−1, n = 10) or saline ( n = 10) for 5 days. We then measured the phosphorylation of PHAS-I and p70S6kin rectus muscle biopsies taken before and at the end of a 180-min infusion of either insulin (10 mU · min−1 · kg−1 euglycemic insulin clamp, n = 5 for both DEX- and saline-treated groups) or a balanced amino acid mixture ( n = 5 for each group also). Protein synthesis was also measured during the infusion period. The results were that DEX-treated rats had higher fasting insulin, slower glucose disposal, less lean body mass, and decreased protein synthetic rates during insulin or amino acid infusion ( P < 0.05 each). DEX did not affect basal PHAS-I or p70S6k phosphorylation but blocked insulin-stimulated phosphorylation of PHAS-I- and amino acid-stimulated phosphorylation of both PHAS-I and p70S6k ( P < 0.01, for each). DEX also increased muscle PHAS-I concentration. These effects can, in part, explain glucocorticoid-induced muscle wasting.


1998 ◽  
Vol 275 (5) ◽  
pp. E864-E871 ◽  
Author(s):  
Arny A. Ferrando ◽  
Kevin D. Tipton ◽  
David Doyle ◽  
Stuart M. Phillips ◽  
Joaquin Cortiella ◽  
...  

Testosterone administration (T) increases lean body mass and muscle protein synthesis. We investigated the effects of short-term T on leg muscle protein kinetics and transport of selected amino acids by use of a model based on arteriovenous sampling and muscle biopsy. Fractional synthesis (FSR) and breakdown (FBR) rates of skeletal muscle protein were also directly calculated. Seven healthy men were studied before and 5 days after intramuscular injection of 200 mg of testosterone enanthate. Protein synthesis increased twofold after injection ( P < 0.05), whereas protein breakdown was unchanged. FSR and FBR calculations were in accordance, because FSR increased twofold ( P < 0.05) without a concomitant change in FBR. Net balance between synthesis and breakdown became more positive with both methodologies ( P< 0.05) and was not different from zero. T injection increased arteriovenous essential and nonessential nitrogen balance across the leg ( P < 0.05) in the fasted state, without increasing amino acid transport. Thus T administration leads to an increased net protein synthesis and reutilization of intracellular amino acids in skeletal muscle.


1992 ◽  
Vol 263 (2) ◽  
pp. E317-E325 ◽  
Author(s):  
N. E. Tawa ◽  
A. L. Goldberg

To define the adaptations that conserve amino acids and muscle protein when dietary protein intake is inadequate, rats (60-70 g final wt) were fed a normal or protein-deficient (PD) diet (18 or 1% lactalbumin), and their muscles were studied in vitro. After 7 days on the PD diet, both protein degradation and synthesis fell 30-40% in skeletal muscles and atria. This fall in proteolysis did not result from reduced amino acid supply to the muscle and preceded any clear decrease in plasma amino acids. Oxidation of branched-chain amino acids, glutamine and alanine synthesis, and uptake of alpha-aminoisobutyrate also fell by 30-50% in muscles and adipose tissue of PD rats. After 1 day on the PD diet, muscle protein synthesis and amino acid uptake decreased by 25-40%, and after 3 days proteolysis and leucine oxidation fell 30-45%. Upon refeeding with the normal diet, protein synthesis also rose more rapidly (+30% by 1 day) than proteolysis, which increased significantly after 3 days (+60%). These different time courses suggest distinct endocrine signals for these responses. The high rate of protein synthesis and low rate of proteolysis during the first 3 days of refeeding a normal diet to PD rats contributes to the rapid weight gain ("catch-up growth") of such animals.


1988 ◽  
Vol 254 (2) ◽  
pp. 579-584 ◽  
Author(s):  
P J Garlick ◽  
I Grant

Rates of muscle protein synthesis were measured in vivo in tissues of post-absorptive young rats that were given intravenous infusions of various combinations of insulin and amino acids. In the absence of amino acid infusion, there was a steady rise in muscle protein synthesis with plasma insulin concentration up to 158 mu units/ml, but when a complete amino acids mixtures was included maximal rates were obtained at 20 mu units/ml. The effect of the complete mixture could be reproduced by a mixture of essential amino acids or of branched-chain amino acids, but not by a non-essential mixture, alanine, methionine or glutamine. It is concluded that amino acids, particularly the branched-chain ones, increase the sensitivity of muscle protein synthesis to insulin.


2014 ◽  
Vol 306 (11) ◽  
pp. E1330-E1339 ◽  
Author(s):  
Lars Holm ◽  
Søren Reitelseder ◽  
Kasper Dideriksen ◽  
Rie H. Nielsen ◽  
Jacob Bülow ◽  
...  

Muscle protein synthesis (MPS) rate is determined conventionally by obtaining two or more tissue biopsies during a primed, continuous infusion of a stable isotopically labeled amino acid. The purpose of the present study was to test whether tracer priming given as a flooding dose, thereby securing an instantaneous labeling of the tissue pools of free tracee amino acids, followed by a continuous infusion of the same tracer to maintain tracer isotopic steady state, could be used to determine the MPS rate over a prolonged period of time by obtaining only a single tissue biopsy. We showed that the tracer from the flood prime appeared immediately in the muscle free pool of amino acids and that this abundance could be kept constant by a subsequent continuous infusion of the tracer. When using phenylalanine as tracer, the flood-primed, continuous infusion protocol does not stimulate the MPS rate per se. In conclusion, the flood-primed, continuous infusion protocol using phenylalanine as tracer can validly be used to measure the protein synthesis rate in human in vivo experiments by obtaining only a single tissue biopsy after a prolonged infusion period.


2001 ◽  
Vol 11 (s1) ◽  
pp. S170-S176 ◽  
Author(s):  
Michael J. Rennie

The major anabolic influences on muscle are feeding and contractile activity. As a result of feeding, anabolism occurs chiefly by increases in protein synthesis with minor changes in protein breakdown. Insulin has a permissive role in increasing synthesis, but the availability of amino acids is crucial for net anabolism. We have investigated the role of amino acids in stimulating muscle protein synthesis, the synergy between exercise and amino acid availability, and some of the signaling elements involved. The results suggest that muscle is acutely sensitive to amino acids, that exercise probably increases the anabolic effects of amino acids by a separate pathway, and that for this reason it is unlikely that accustomed physical exercise increases protein requirements.


Sign in / Sign up

Export Citation Format

Share Document