The single-biopsy approach in determining protein synthesis in human slow-turning-over tissue: use of flood-primed, continuous infusion of amino acid tracers

2014 ◽  
Vol 306 (11) ◽  
pp. E1330-E1339 ◽  
Author(s):  
Lars Holm ◽  
Søren Reitelseder ◽  
Kasper Dideriksen ◽  
Rie H. Nielsen ◽  
Jacob Bülow ◽  
...  

Muscle protein synthesis (MPS) rate is determined conventionally by obtaining two or more tissue biopsies during a primed, continuous infusion of a stable isotopically labeled amino acid. The purpose of the present study was to test whether tracer priming given as a flooding dose, thereby securing an instantaneous labeling of the tissue pools of free tracee amino acids, followed by a continuous infusion of the same tracer to maintain tracer isotopic steady state, could be used to determine the MPS rate over a prolonged period of time by obtaining only a single tissue biopsy. We showed that the tracer from the flood prime appeared immediately in the muscle free pool of amino acids and that this abundance could be kept constant by a subsequent continuous infusion of the tracer. When using phenylalanine as tracer, the flood-primed, continuous infusion protocol does not stimulate the MPS rate per se. In conclusion, the flood-primed, continuous infusion protocol using phenylalanine as tracer can validly be used to measure the protein synthesis rate in human in vivo experiments by obtaining only a single tissue biopsy after a prolonged infusion period.

2007 ◽  
Vol 293 (5) ◽  
pp. E1416-E1425 ◽  
Author(s):  
Renán A. Orellana ◽  
Asumthia Jeyapalan ◽  
Jeffery Escobar ◽  
Jason W. Frank ◽  
Hanh V. Nguyen ◽  
...  

In skeletal muscle of adults, sepsis reduces protein synthesis by depressing translation initiation and induces resistance to branched-chain amino acid stimulation. Normal neonates maintain a high basal muscle protein synthesis rate that is sensitive to amino acid stimulation. In the present study, we determined the effect of amino acids on protein synthesis in skeletal muscle and other tissues in septic neonates. Overnight-fasted neonatal pigs were infused with endotoxin (LPS, 0 and 10 μg·kg−1·h−1), whereas glucose and insulin were maintained at fasting levels; amino acids were clamped at fasting or fed levels. In the presence of fasting insulin and amino acids, LPS reduced protein synthesis in longissimus dorsi (LD) and gastrocnemius muscles and increased protein synthesis in the diaphragm, but had no effect in masseter and heart muscles. Increasing amino acids to fed levels accelerated muscle protein synthesis in LD, gastrocnemius, masseter, and diaphragm. LPS stimulated protein synthesis in liver, lung, spleen, pancreas, and kidney in fasted animals. Raising amino acids to fed levels increased protein synthesis in liver of controls, but not LPS-treated animals. The increase in muscle protein synthesis in response to amino acids was associated with increased mTOR, 4E-BP1, and S6K1 phosphorylation and eIF4G-eIF4E association in control and LPS-infused animals. These findings suggest that amino acids stimulate skeletal muscle protein synthesis during acute endotoxemia via mTOR-dependent ribosomal assembly despite reduced basal protein synthesis rates in neonatal pigs. However, provision of amino acids does not further enhance the LPS-induced increase in liver protein synthesis.


2005 ◽  
Vol 288 (1) ◽  
pp. E278-E284 ◽  
Author(s):  
Kevin E. Yarasheski ◽  
Samuel R. Smith ◽  
William G. Powderly

We reported (Yarasheski KE, Zachwieja JJ, Gischler J, Crowley J, Horgan MM, and Powderly WG. Am J Physiol Endocrinol Metab 275: E577–E583, 1998) that AIDS muscle wasting was associated with an inappropriately low rate of muscle protein synthesis and an elevated glutamine rate of appearance (Ra Gln). We hypothesized that high plasma HIV RNA caused dysregulation of muscle amino acid metabolism. We determined whether a reduction in HIV RNA (≥1 log) increased muscle protein synthesis rate and reduced Ra Gln and muscle proteasome activity in 10 men and 1 woman (22–57 yr, 60–108 kg, 17–33 kg muscle) with advanced HIV (CD4 = 0–311 cells/μl; HIV RNA = 10–375 × 103 copies/ml). We utilized stable isotope tracer methodologies ([13C]Leu and [15N]Gln) to measure the fractional rate of mixed muscle protein synthesis and plasma Ra Gln in these subjects before and 4 mo after initiating their first or a salvage antiretroviral therapy regimen. After treatment, median CD4 increased (98 vs. 139 cells/μl, P = 0.009) and median HIV RNA was reduced (155,828 vs. 100 copies/ml, P = 0.003). Mixed muscle protein synthesis rate increased (0.062 ± 0.005 vs. 0.078 ± 0.006%/h, P = 0.01), Ra Gln decreased (387 ± 33 vs. 323 ± 15 μmol·kg fat-free mass−1·h−1, P = 0.04), and muscle proteasome chymotrypsin-like catalytic activity was reduced 14% ( P = 0.03). Muscle mass was only modestly increased (1 kg, P = not significant). We estimated that, for each 10,000 copies/ml reduction in HIV RNA, ∼3 g of additional muscle protein are synthesized per day. These findings suggest that reducing HIV RNA increases muscle protein synthesis and reduces muscle proteolysis, but muscle protein synthesis relative to whole body protein synthesis rate is not restored to normal, so muscle mass is not substantially increased.


2003 ◽  
Vol 285 (1) ◽  
pp. E40-E53 ◽  
Author(s):  
Pamela M. J. O'Connor ◽  
Scot R. Kimball ◽  
Agus Suryawan ◽  
Jill A. Bush ◽  
Hanh V. Nguyen ◽  
...  

Previous studies have shown that intravenous infusion of insulin and/or amino acids reproduces the feeding-induced stimulation of muscle protein synthesis in neonates and that insulin and amino acids act independently to produce this effect. The goal of the present study was to delineate the regulatory roles of insulin and amino acids on muscle protein synthesis in neonates by examining translational control mechanisms, specifically the eukaryotic translation initiation factors (eIFs), which enable coupling of initiator methionyl-tRNAi and mRNA to the 40S ribosomal subunit. Insulin secretion was blocked by somatostatin in fasted 7-day-old pigs ( n = 8–12/group), insulin was infused to achieve plasma levels of ∼0, 2, 6, and 30 μU/ml, and amino acids were clamped at fasting or fed levels or, at the high insulin dose, below fasting. Both insulin and amino acids increased the phosphorylation of ribosomal protein S6 kinase (S6K1) and the eIF4E-binding protein (4E-BP1), decreased the binding of 4E-BP1 to eIF4E, increased eIF4E binding to eIF4G, and increased fractional protein synthesis rates but did not affect eIF2B activity. In the absence of insulin, amino acids had no effect on these translation initiation factors but increased the protein synthesis rates. Raising insulin from below fasting to fasting levels generally did not alter translation initiation factor activity but raised protein synthesis rates. The phosphorylation of S6K1 and 4E-BP1 and the amount of 4E-BP1 bound to eIF4E and eIF4E bound to eIF4G were correlated with insulin level, amino acid level, and protein synthesis rate. Thus insulin and amino acids regulate muscle protein synthesis in skeletal muscle of neonates by modulating the availability of eIF4E for 48S ribosomal complex assembly, although other processes also must be involved.


2015 ◽  
Vol 173 (1) ◽  
pp. R25-R34 ◽  
Author(s):  
Jorn Trommelen ◽  
Bart B L Groen ◽  
Henrike M Hamer ◽  
Lisette C P G M de Groot ◽  
Luc J C van Loon

BackgroundThough it is well appreciated that insulin plays an important role in the regulation of muscle protein metabolism, there is much discrepancy in the literature on the capacity of exogenous insulin administration to increase muscle protein synthesis ratesin vivoin humans.ObjectiveTo assess whether exogenous insulin administration increases muscle protein synthesis rates in young and older adults.DesignA systematic review of clinical trials was performed and the presence or absence of an increase in muscle protein synthesis rate was reported for each individual study arm. In a stepwise manner, multiple models were constructed that excluded study arms based on the following conditions: model 1, concurrent hyperaminoacidemia; model 2, insulin-induced hypoaminoacidemia; model 3, supraphysiological insulin concentrations; and model 4, older, more insulin resistant, subjects.ConclusionsFrom the presented data in the current systematic review, we conclude that: i) exogenous insulin and amino acid administration effectively increase muscle protein synthesis, but this effect is attributed to the hyperaminoacidemia; ii) exogenous insulin administered systemically induces hypoaminoacidemia which obviates any insulin-stimulatory effect on muscle protein synthesis; iii) exogenous insulin resulting in supraphysiological insulin levels exceeding 50 000 pmol/l may effectively augment muscle protein synthesis; iv) exogenous insulin may have a diminished effect on muscle protein synthesis in older adults due to age-related anabolic resistance; and v) exogenous insulin administered systemically does not increase muscle protein synthesis in healthy, young adults.


1997 ◽  
Vol 273 (1) ◽  
pp. E122-E129 ◽  
Author(s):  
G. Biolo ◽  
K. D. Tipton ◽  
S. Klein ◽  
R. R. Wolfe

Six normal untrained men were studied during the intravenous infusion of a balanced amino acid mixture (approximately 0.15 g.kg-1.h-1 for 3 h) at rest and after a leg resistance exercise routine to test the influence of exercise on the regulation of muscle protein kinetics by hyperaminoacidemia. Leg muscle protein kinetics and transport of selected amino acids (alanine, phenylalanine, leucine, and lysine) were isotopically determined using a model based on arteriovenous blood samples and muscle biopsy. The intravenous amino acid infusion resulted in comparable increases in arterial amino acid concentrations at rest and after exercise, whereas leg blood flow was 64 +/- 5% greater after exercise than at rest. During hyperaminoacidemia, the increases in amino acid transport above basal were 30-100% greater after exercise than at rest. Increases in muscle protein synthesis were also greater after exercise than at rest (291 +/- 42% vs. 141 +/- 45%). Muscle protein breakdown was not significantly affected by hyperminoacidemia either at rest or after exercise. We conclude that the stimulatory effect of exogenous amino acids on muscle protein synthesis is enhanced by prior exercise, perhaps in part because of enhanced blood flow. Our results imply that protein intake immediately after exercise may be more anabolic than when ingested at some later time.


1995 ◽  
Vol 89 (4) ◽  
pp. 383-388 ◽  
Author(s):  
Peter W. Emery ◽  
Peter Sanderson

1. The healing of an abdominal muscle wound after surgery is associated with a considerable increase in the rate of protein synthesis. We have investigated whether this increase in protein synthesis is affected by chronic undernutrition, and whether this causes a delay in wound healing. 2. A group of rats was fed 58% of the voluntary food intake of a matched control group. After 7 days half the rats in each group underwent abdominal surgery. Forty-eight hours later all the rats were killed and muscle protein synthesis rate was measured by the flooding dose technique. 3. In a second experiment using the same dietary regimen rats were placed in metabolic cages after surgery and killed 7 days later. In addition to measurements of muscle protein synthesis, wound breaking strength was measured with a tensiometer and collagen content was also measured at the wound site. 4. Dietary restriction caused a loss of body weight, a decrease in nitrogen balance and a deficit in muscle protein mass. It also caused a decrease in protein synthesis rate in gastrocnemius muscle and in parts of the abdominal muscle distant from the site of the wound. However, it had no effect on the rate of muscle protein synthesis at the site of the wound either 2 or 7 days after surgery. The tensile strength and the collagen content of the wound were also unaffected by food restriction. 5. It is concluded that the wound healing process is uniquely protected from the effects of moderate undernutrition such as might be experienced by a chronically ill patient.


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 989 ◽  
Author(s):  
Bendtsen ◽  
Thorning ◽  
Reitelseder ◽  
Ritz ◽  
Hansen ◽  
...  

Abstract: Background: Whey protein has been shown to be one of the best proteins to stimulate muscle protein synthesis rate (MPS), but other high quality proteins, e.g., animal/porcine-derived, could have similar effects. Objective: To investigate the effects of hydrolyzed porcine proteins from blood (HPB) and muscle (HPM), in comparison to hydrolyzed whey protein (HW), on MPS after intake of 15 g alone or 30 g protein as part of a mixed meal. We hypothesized that the postprandial MPS would be similar for porcine proteins and whey protein. Design: Eighteen men (mean ± SD age: 24 ± 1 year; BMI: 21.7 ± 0.4 kg/m2) participated in the randomized, double-blind, three-way cross-over study. Subjects consumed the three test products (HPB, HPM and HW) in a random order in two servings at each test day. Serving 1 consisted of a drink with 15 g protein and serving 2 of a drink with 30 g protein together with a mixed meal. A flood-primed continuous infusion of (ring-13C6) phenylalanine was performed and muscle biopsies, blood and urine samples were collected for determination of MPS, muscle free leucine, plasma amino acid concentrations and urea excretion. Results: There were no statistical differences between the MPS measured after consuming 15 g protein alone or 30 g with a mixed meal (p = 0.53) of HPB (0.048 ± 0.007 vs. 0.049 ± 0.008%/h, resp.), HPM (0.063 ± 0.011 vs. 0.062 ± 0.011 %/h, resp.) and HW (0.058 ± 0.007 vs. 0.071 ± 0.013%/h, resp.). However, the impact of protein type on MPS reached statistical tendency (HPB vs. HPM (p = 0.093) and HPB vs. HW (p = 0.067)) with no difference between HPM and HW (p = 0.88). Plasma leucine, branched-chain, essential and total amino acids were generally higher for HPB and HW than HPM (p < 0.01), which reflected their content in the proteins. Muscle-free leucine was higher for HPB than HW and HPM (p < 0.05). Conclusion: Hydrolyzed porcine proteins from blood and muscle resulted in an MPS similar to that of HW, although with a trend for porcine blood proteins to be inferior to muscle proteins and whey. Consequently, these porcine-derived muscle proteins can be used similarly to whey protein to support maintenance of skeletal muscle as part of supplements and ingredients in foods.


1998 ◽  
Vol 275 (5) ◽  
pp. E864-E871 ◽  
Author(s):  
Arny A. Ferrando ◽  
Kevin D. Tipton ◽  
David Doyle ◽  
Stuart M. Phillips ◽  
Joaquin Cortiella ◽  
...  

Testosterone administration (T) increases lean body mass and muscle protein synthesis. We investigated the effects of short-term T on leg muscle protein kinetics and transport of selected amino acids by use of a model based on arteriovenous sampling and muscle biopsy. Fractional synthesis (FSR) and breakdown (FBR) rates of skeletal muscle protein were also directly calculated. Seven healthy men were studied before and 5 days after intramuscular injection of 200 mg of testosterone enanthate. Protein synthesis increased twofold after injection ( P < 0.05), whereas protein breakdown was unchanged. FSR and FBR calculations were in accordance, because FSR increased twofold ( P < 0.05) without a concomitant change in FBR. Net balance between synthesis and breakdown became more positive with both methodologies ( P< 0.05) and was not different from zero. T injection increased arteriovenous essential and nonessential nitrogen balance across the leg ( P < 0.05) in the fasted state, without increasing amino acid transport. Thus T administration leads to an increased net protein synthesis and reutilization of intracellular amino acids in skeletal muscle.


1992 ◽  
Vol 263 (2) ◽  
pp. E317-E325 ◽  
Author(s):  
N. E. Tawa ◽  
A. L. Goldberg

To define the adaptations that conserve amino acids and muscle protein when dietary protein intake is inadequate, rats (60-70 g final wt) were fed a normal or protein-deficient (PD) diet (18 or 1% lactalbumin), and their muscles were studied in vitro. After 7 days on the PD diet, both protein degradation and synthesis fell 30-40% in skeletal muscles and atria. This fall in proteolysis did not result from reduced amino acid supply to the muscle and preceded any clear decrease in plasma amino acids. Oxidation of branched-chain amino acids, glutamine and alanine synthesis, and uptake of alpha-aminoisobutyrate also fell by 30-50% in muscles and adipose tissue of PD rats. After 1 day on the PD diet, muscle protein synthesis and amino acid uptake decreased by 25-40%, and after 3 days proteolysis and leucine oxidation fell 30-45%. Upon refeeding with the normal diet, protein synthesis also rose more rapidly (+30% by 1 day) than proteolysis, which increased significantly after 3 days (+60%). These different time courses suggest distinct endocrine signals for these responses. The high rate of protein synthesis and low rate of proteolysis during the first 3 days of refeeding a normal diet to PD rats contributes to the rapid weight gain ("catch-up growth") of such animals.


Sign in / Sign up

Export Citation Format

Share Document