Hepatic glucose metabolism during intraduodenal glucose infusion: impact of infection

2000 ◽  
Vol 279 (1) ◽  
pp. E108-E115
Author(s):  
Owen P. McGuinness ◽  
Joseph Ejiofor ◽  
D. Brooks Lacy ◽  
Nancy Schrom

We previously reported that infection decreases hepatic glucose uptake when glucose is given as a constant peripheral glucose infusion (8 mg · kg−1· min−1). This impairment persisted despite greater hyperinsulinemia in the infected group. In a normal setting, hepatic glucose uptake can be further enhanced if glucose is given gastrointestinally. Thus the aim of this study was to determine whether hepatic glucose uptake is impaired during an infection when glucose is given gastrointestinally. Thirty-six hours before study, a sham (SH, n = 7) or Escherichia coli-containing (2 × 109organisms/kg; INF; n = 7) fibrin clot was placed in the peritoneal cavity of chronically catheterized dogs. After the 36 h, a glucose bolus (150 mg/kg) followed by a continuous infusion (8 mg · kg−1· min−1) of glucose was given intraduodenally to conscious dogs for 240 min. Tracer ([3-3H]glucose and [U-14C]glucose) and arterial-venous difference techniques were used to assess hepatic and intestinal glucose metabolism. Infection increased hepatic blood flow (35 ± 5 vs. 47 ± 3 ml · kg−1· min−1; SH vs. INF) and basal glucose rate of appearance (2.1 ± 0.2 vs. 3.3 ± 0.1 mg · kg−1· min−1). Arterial insulin concentrations increased similarly in SH and INF during the last hour of glucose infusion (38 ± 8 vs. 46 ± 20 μU/ml), and arterial glucagon concentrations fell (62 ± 14 to 30 ± 3 vs. 624 ± 191 to 208 ± 97 pg/ml). Net intestinal glucose absorption was decreased in INF, attenuating the increase in blood glucose caused by the glucose load. Despite this, net hepatic glucose uptake (1.6 ± 0.8 vs. 2.4 ± 0.9 mg · kg−1· min−1; SH vs. INF) and consequently tracer-determined glycogen synthesis (1.3 ± 0.3 vs. 1.0 ± 0.3 mg · kg−1· min−1) were similar between groups. In summary, infection impairs net glucose absorption, but not net hepatic glucose uptake or glycogen deposition, when glucose is given intraduodenally.

2015 ◽  
Vol 308 (10) ◽  
pp. E860-E867 ◽  
Author(s):  
Katie C. Coate ◽  
Guillaume Kraft ◽  
Masakazu Shiota ◽  
Marta S. Smith ◽  
Ben Farmer ◽  
...  

Dogs consuming a hypercaloric high-fat and -fructose diet (52 and 17% of total energy, respectively) or a diet high in either fructose or fat for 4 wk exhibited blunted net hepatic glucose uptake (NHGU) and glycogen deposition in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery. The effect of a hypercaloric diet containing neither fructose nor excessive fat has not been examined. Dogs with an initial weight of ≈25 kg consumed a chow and meat diet (31% protein, 44% carbohydrate, and 26% fat) in weight-maintaining (CTR; n = 6) or excessive (Hkcal; n = 7) amounts for 4 wk (cumulative weight gain 0.0 ± 0.3 and 1.5 ± 0.5 kg, respectively, P < 0.05). They then underwent clamp studies with infusions of somatostatin and intraportal insulin (4× basal) and glucagon (basal). The hepatic glucose load was doubled with peripheral (Pe) glucose infusion for 90 min (P1) and intraportal glucose at 4 mg·kg−1·min−1 plus Pe glucose for the final 90 min (P2). NHGU was blunted ( P < 0.05) in Hkcal during both periods (mg·kg−1·min−1; P1: 1.7 ± 0.2 vs. 0.3 ± 0.4; P2: 3.6 ± 0.3 vs. 2.3 ± 0.4, CTR vs. Hkcal, respectively). Terminal hepatic glucokinase catalytic activity was reduced nearly 50% in Hkcal vs. CTR ( P < 0.05), although glucokinase protein did not differ between groups. In Hkcal vs. CTR, liver glycogen was reduced 27% ( P < 0.05), with a 91% increase in glycogen phosphorylase activity ( P < 0.05) but no significant difference in glycogen synthase activity. Thus, Hkcal impaired NHGU and glycogen synthesis compared with CTR, indicating that excessive energy intake, even if the diet is balanced and nutritious, negatively impacts hepatic glucose metabolism.


2009 ◽  
Vol 297 (2) ◽  
pp. E358-E366 ◽  
Author(s):  
Jason J. Winnick ◽  
Zhibo An ◽  
Mary Courtney Moore ◽  
Christopher J. Ramnanan ◽  
Ben Farmer ◽  
...  

To determine the effect of an acute increase in hepatic glycogen on net hepatic glucose uptake (NHGU) and disposition in response to insulin in vivo, studies were performed on two groups of dogs fasted 18 h. During the first 4 h of the study, somatostatin was infused peripherally, while insulin and glucagon were replaced intraportally in basal amounts. Hyperglycemia was brought about by glucose infusion, and either saline ( n = 7) or fructose ( n = 7; to stimulate NHGU and glycogen deposition) was infused intraportally. A 2-h control period then followed, during which the portal fructose and saline infusions were stopped, allowing NHGU and glycogen deposition in the fructose-infused animals to return to rates similar to those of the animals that received the saline infusion. This was followed by a 2-h experimental period, during which hyperglycemia was continued but insulin infusion was increased fourfold in both groups. During the initial 4-h glycogen loading period, NHGU averaged 1.18 ± 0.27 and 5.55 ± 0.53 mg·kg−1·min−1 and glycogen synthesis averaged 0.72 ± 0.24 and 3.98 ± 0.57 mg·kg−1·min−1 in the saline and fructose groups, respectively ( P < 0.05). During the 2-h hyperinsulinemic period, NHGU rose from 1.5 ± 0.4 and 0.9 ± 0.2 to 3.1 ± 0.6 and 2.5 ± 0.5 mg·kg−1·min−1 in the saline and fructose groups, respectively, a change of 1.6 mg·kg−1·min−1 in both groups despite a significantly greater liver glycogen level in the fructose-infused group. Likewise, the metabolic fate of the extracted glucose (glycogen, lactate, or carbon dioxide) was not different between groups. These data indicate that an acute physiological increase in the hepatic glycogen content does not alter liver glucose uptake and storage under hyperglycemic/hyperinsulinemic conditions in the dog.


2001 ◽  
Vol 280 (5) ◽  
pp. E703-E711 ◽  
Author(s):  
Christine M. Donmoyer ◽  
Joseph Ejiofor ◽  
D. Brooks Lacy ◽  
Sheng-Song Chen ◽  
Owen P. McGuinness

During chronic total parenteral nutrition (TPN), net hepatic glucose uptake (NHGU) and net hepatic lactate release (NHLR) are markedly reduced (↓∼45 and ∼65%, respectively) with infection. Because small quantities of fructose are known to augment hepatic glucose uptake and lactate release in normal fasted animals, the aim of this work was to determine whether acute fructose infusion with TPN could correct the impairments in NHGU and NHLR during infection. Chronically catheterized conscious dogs received TPN for 5 days via the inferior vena cava at a rate designed to match daily basal energy requirements. On the third day of TPN administration, a sterile (SHAM, n = 12) or Escherichia coli-containing (INF, n = 11) fibrin clot was implanted in the peritoneal cavity. Forty-two hours later, somatostatin was infused with intraportal replacement of insulin (12 ± 2 vs. 24 ± 2 μU/ml, SHAM vs. INF, respectively) and glucagon (24 ± 4 vs. 92 ± 5 pg/ml) to match concentrations previously observed in sham and infected animals. After a 120-min basal period, animals received either saline (Sham+S, n = 6; Inf+S, n = 6) or intraportal fructose (0.7 mg · kg−1· min−1; Sham+F, n = 6; Inf+F, n = 5) infusion for 180 min. Isoglycemia of 120 mg/dl was maintained with a variable glucose infusion. Combined tracer and arteriovenous difference techniques were used to assess hepatic glucose metabolism. Acute fructose infusion with TPN augmented NHGU by 2.9 ± 0.4 and 2.5 ± 0.3 mg · kg−1· min−1in Sham+F and Inf+F, respectively. The majority of liver glucose uptake was stored as glycogen, and NHLR did not increase substantially. Therefore, despite an infection-induced impairment in NHGU and different hormonal environments, small amounts of fructose enhanced NHGU similarly in sham and infected animals. Glycogen storage, not lactate release, was the preferential fate of the fructose-induced increase in hepatic glucose disposal in animals adapted to TPN.


1995 ◽  
Vol 269 (2) ◽  
pp. E199-E207 ◽  
Author(s):  
O. P. McGuinness ◽  
J. Jacobs ◽  
C. Moran ◽  
B. Lacy

The effect of infection on hepatic uptake and disposal of a continuous (180-min) intravenous glucose infusion (8 mg.kg-1.min-1) was examined in conscious, 54-h-fasted, chronically catheterized dogs. Thirty-six hours before a study, either infection was induced by implantation of an Escherichia coli-containing (INF; 2 x 10(9) organisms/kg body wt; n = 6) fibrinogen clot, or a sterile (SH; n = 6) clot was implanted into the peritoneal cavity. Hepatic glucose metabolism was assessed using tracer ([3-3H]glucose and [U-14C]glucose) and arteriovenous difference techniques. Infection increased the basal rate of glucose appearance (45%); glucose levels were not altered. In response to glucose infusion, average blood glucose levels increased to similar levels (140 +/- 9 vs. 147 +/- 11 mg/dl in INF and SH, respectively), whereas arterial insulin levels were higher in the infected group during the last hour of the glucose infusion (77 +/- 10 vs. 41 +/- 5 microU/ml in INF vs. SH). Infection impaired net hepatic glucose uptake (0.6 +/- 0.5 and 2.7 +/- 0.7 mg.kg-1.min-1 in INF and SH; P < 0.05). The liver remained a persistent lactate consumer (4.1 +/- 1.8 mumol.kg-1.min-1), whereas the sham group became a net producer of lactate (-3.8 +/- 1.3 mumol.kg-1.min-1). Infection decreased net hepatic glycogen deposition by 53%. In conclusion, infection impairs net hepatic glucose uptake and glycogen deposition despite an exaggerated increase in insulin levels.


1996 ◽  
Vol 271 (2) ◽  
pp. E215-E222 ◽  
Author(s):  
M. C. Moore ◽  
L. Rossetti ◽  
M. J. Pagliassotti ◽  
M. Monahan ◽  
C. Venable ◽  
...  

The role of the liver nerves in the disposition of peripherally administered glucose was examined in seven hepatic innervated (HI) and nine hepatic denervated (HD) 42-h-fasted conscious dogs. After a 40-min basal period, there was a 4-h experimental period during which the hepatic glucose load was increased twofold via peripheral glucose infusion. Somatostatin was infused to suppress pancreatic endocrine secretion, and insulin and glucagon were infused intraportally to produce a fourfold increase in insulin and a gradual decrease (approximately 25%) in glucagon. The area under the curve of net hepatic glucose uptake (NHGU) during the glucose infusion period totaled 483 +/- 82 and 335 +/- 32 mg/kg in HD and HI, respectively (P < 0.05). The area under the curve of the hepatic fractional extraction of glucose was 27% greater in HD (P < 0.05). Net hepatic lactate output was similar in the two groups, and net hepatic glycogen synthesis was 3.8 +/- 0.8 vs. 2.7 +/- 0.5 mg.kg dog wt-1.min-1 in HD and HI, respectively (P = 0.13). The direct pathway of glycogen synthesis was responsible for 54-58% of net hepatic glycogen synthesis in both HI and HD (n = 6 for both). In summary 1) NHGU in response to peripheral glucose infusion was approximately 44% greater in HD than in HI, 2) net hepatic glycogen synthesis was enhanced by 41% in HD although the probability of this change was 0.13, and 3) the contribution of the direct pathway to glycogen synthesis was the same in HD and HI. These data are consistent with a role for the liver nerves in regulating the magnitude of NHGU in response to glucose administration. They also indicate that the absence of liver nerves may reduce glycogen turnover during glucose infusion.


2000 ◽  
Vol 279 (6) ◽  
pp. E1271-E1277 ◽  
Author(s):  
Mary Courtney Moore ◽  
Po-Shiuan Hsieh ◽  
Doss W. Neal ◽  
Alan D. Cherrington

The glycemic and hormonal responses and net hepatic and nonhepatic glucose uptakes were quantified in conscious 42-h-fasted dogs during a 180-min infusion of glucose at 10 mg · kg−1 · min−1 via a peripheral (Pe10, n = 5) or the portal (Po10, n = 6) vein. Arterial plasma insulin concentrations were not different during the glucose infusion in Pe10 and Po10 (37 ± 6 and 43 ± 12 μU/ml, respectively), and glucagon concentrations declined similarly throughout the two studies. Arterial blood glucose concentrations during glucose infusion were not different between groups (125 ± 13 and 120 ± 6 mg/dl in Pe10 and Po10, respectively). Portal glucose delivery made the hepatic glucose load significantly greater (36 ± 3 vs. 46 ± 5 mg · kg−1 · min−1 in Pe10 vs. Po10, respectively, P < 0.05). Net hepatic glucose uptake (NHGU; 1.1 ± 0.4 vs. 3.1 ± 0.4 mg · kg−1 · min−1) and fractional extraction (0.03 ± 0.01 vs. 0.07 ± 0.01) were smaller ( P < 0.05) in Pe10 than in Po10. Nonhepatic (primarily muscle) glucose uptake was correspondingly increased in Pe10 compared with Po10 (8.9 ± 0.4 vs. 6.9 ± 0.4 mg · kg−1 · min−1, P < 0.05). Approximately one-half of the difference in NHGU between groups could be accounted for by the difference in hepatic glucose load, with the remainder attributable to the effect of the portal signal itself. Even in the absence of somatostatin and fixed hormone concentrations, the portal signal acts to alter partitioning of a glucose load among the tissues, stimulating NHGU and reducing peripheral glucose uptake.


1999 ◽  
Vol 276 (5) ◽  
pp. E930-E937 ◽  
Author(s):  
Po-Shiuan Hsieh ◽  
Mary Courtney Moore ◽  
Doss W. Neal ◽  
Maya Emshwiller ◽  
Alan D. Cherrington

Experiments were performed on two groups of 42-h-fasted conscious dogs ( n = 6/group). Somatostatin was given peripherally with insulin (4-fold basal) and glucagon (basal) intraportally. In the first experimental period, glucose was infused peripherally to double the hepatic glucose load (HGL) in both groups. In the second experimental period, glucose (21.8 μmol ⋅ kg−1⋅ min−1) was infused intraportally and the peripheral glucose infusion rate (PeGIR) was reduced to maintain the precreating HGL in the portal signal (PO) group, whereas saline was given intraportally in the control (CON) group and PeGIR was not changed. In the third period, the portal glucose infusion was stopped in the PO group and PeGIR was increased to sustain HGL. PeGIR was continued in the CON group. The glucose loads to the liver did not differ in the CON and PO groups. Net hepatic glucose uptake was 9.6 ± 2.5, 11.6 ± 2.6, and 15.5 ± 3.2 vs. 10.8 ± 1.8, 23.7 ± 3.0, and 15.5 ± 1.1 μmol ⋅ kg−1⋅ min−1, and nonhepatic glucose uptake (non-HGU) was 29.8 ± 1.1, 40.1 ± 4.5, and 49.5 ± 4.0 vs. 26.6 ± 4.3, 23.2 ± 4.0, and 40.4 ± 3.1 μmol ⋅ kg−1⋅ min−1in the CON and PO groups during the three periods, respectively. Cessation of the portal signal shifted NHGU and non-HGU to rates similar to those evident in the CON group within 10 min. These results indicate that even under hyperinsulinemic conditions the effects of the portal signal on hepatic and peripheral glucose uptake are rapidly reversible.


2008 ◽  
Vol 294 (4) ◽  
pp. R1197-R1204 ◽  
Author(s):  
Makoto Nishizawa ◽  
Masakazu Shiota ◽  
Mary Courtney Moore ◽  
Stephanie M. Gustavson ◽  
Doss W. Neal ◽  
...  

We examined whether intraportal delivery of neuropeptide Y (NPY) affects glucose metabolism in 42-h-fasted conscious dogs using arteriovenous difference methodology. The experimental period was divided into three subperiods (P1, P2, and P3). During all subperiods, the dogs received infusions of somatostatin, intraportal insulin (threefold basal), intraportal glucagon (basal), and peripheral intravenous glucose to increase the hepatic glucose load twofold basal. Following P1, in the NPY group ( n = 7), NPY was infused intraportally at 0.2 and 5.1 pmol·kg−1·min−1 during P2 and P3, respectively. The control group ( n = 7) received intraportal saline infusion without NPY. There were no significant changes in hepatic blood flow in NPY vs. control. The lower infusion rate of NPY (P2) did not enhance net hepatic glucose uptake. During P3, the increment in net hepatic glucose uptake (compared with P1) was 4 ± 1 and 10 ± 2 μmol·kg−1·min−1 in control and NPY, respectively ( P < 0.05). The increment in net hepatic fractional glucose extraction during P3 was 0.015 ± 0.005 and 0.039 ± 0.008 in control and NPY, respectively ( P < 0.05). Net hepatic carbon retention was enhanced in NPY vs. control (22 ± 2 vs. 14 ± 2 μmol·kg−1·min−1, P < 0.05). There were no significant differences between groups in the total glucose infusion rate. Thus, intraportal NPY stimulates net hepatic glucose uptake without significantly altering whole body glucose disposal in dogs.


1982 ◽  
Vol 242 (2) ◽  
pp. E97-E101 ◽  
Author(s):  
A. D. Cherrington ◽  
P. E. Williams ◽  
N. Abou-Mourad ◽  
W. W. Lacy ◽  
K. E. Steiner ◽  
...  

The aim of this study was to determine whether a physiological increment in plasma insulin could promote substantial hepatic glucose uptake in response to hyperglycemia brought about by intravenous glucose infusion in the conscious dog. To accomplish this, the plasma glucose level was doubled by glucose infusion into 36-h fasted dogs maintained on somatostatin, basal glucagon, and basal or elevated intraportal insulin infusions. In the group with basal glucagon levels and modest hyperinsulinemia (33 +/- 2 micro U/ml), the acute induction of hyperglycemia (mean increment of 120 mg/dl) caused marked net hepatic glucose uptake (3.7 +/- 0.5 mg . kg-1 . min-1). In contrast, similar hyperglycemia brought about in the presence of basal glucagon and basal insulin levels described net hepatic glucose output in 56%, but did not cause net hepatic glucose uptake. The length of fast was not crucial to the response because similar signals (insulin, 38 +/- 6 micro U/ml; glucose increment, 127 mg/dl) promoted identical net hepatic glucose uptake (3.8 +/- 0.6 mg . kg-1 . min-1) in dogs fasted for only 16 h. In conclusion, in the conscious dog, a) physiologic increments in plasma insulin have a marked effect on the ability of hyperglycemia to stimulate net hepatic glucose uptake, and b) it is not necessary to administer glucose orally to promote substantial net hepatic glucose uptake.


2005 ◽  
Vol 288 (6) ◽  
pp. E1160-E1167 ◽  
Author(s):  
Masakazu Shiota ◽  
Pietro Galassetti ◽  
Kayano Igawa ◽  
Doss W. Neal ◽  
Alan D. Cherrington

The effect of small amounts of fructose on net hepatic glucose uptake (NHGU) during hyperglycemia was examined in the presence of insulinopenia in conscious 42-h fasted dogs. During the study, somatostatin (0.8 μg·kg−1·min−1) was given along with basal insulin (1.8 pmol·kg−1·min−1) and glucagon (0.5 ng·kg−1·min−1). After a control period, glucose (36.1 μmol·kg−1·min−1) was continuously given intraportally for 4 h with (2.2 μmol·kg−1·min−1) or without fructose. In the fructose group, the sinusoidal blood fructose level (nmol/ml) rose from <16 to 176 ± 11. The infusion of glucose alone (the control group) elevated arterial blood glucose (μmol/ml) from 4.3 ± 0.3 to 11.2 ± 0.6 during the first 2 h after which it remained at 11.6 ± 0.8. In the presence of fructose, glucose infusion elevated arterial blood glucose (μmol/ml) from 4.3 ± 0.2 to 7.4 ± 0.6 during the first 1 h after which it decreased to 6.1 ± 0.4 by 180 min. With glucose infusion, net hepatic glucose balance (μmol·kg−1·min−1) switched from output (8.9 ± 1.7 and 13.3 ± 2.8) to uptake (12.2 ± 4.4 and 29.4 ± 6.7) in the control and fructose groups, respectively. Average NHGU (μmol·kg−1·min−1) and fractional glucose extraction (%) during last 3 h of the test period were higher in the fructose group (30.6 ± 3.3 and 14.5 ± 1.4) than in the control group (15.0 ± 4.4 and 5.9 ± 1.8). Glucose 6-phosphate and glycogen content (μmol glucose/g) in the liver and glucose incorporation into hepatic glycogen (μmol glucose/g) were higher in the fructose (218 ± 2, 283 ± 25, and 109 ± 26, respectively) than in the control group (80 ± 8, 220 ± 31, and 41 ± 5, respectively). In conclusion, small amounts of fructose can markedly reduce hyperglycemia during intraportal glucose infusion by increasing NHGU even when insulin secretion is compromised.


Sign in / Sign up

Export Citation Format

Share Document