Activation of the Ae4 (Slc4a9) cation-driven Cl-/HCO3- exchanger by the cAMP-dependent protein kinase (PKA) in salivary gland acinar cells

Author(s):  
Gaspar Peña-Munzenmayer ◽  
Yusuke Kondo ◽  
Constanza Salinas ◽  
José Sarmiento ◽  
Sebastian Brauchi ◽  
...  

Ae4 transporters are critical for Cl- uptake across the basolateral membrane of acinar cells in the submandibular gland (SMG). Although required for fluid secretion, little is known about the physiological regulation of Ae4. To investigate whether Ae4 is regulated by the cAMP-dependent signaling pathway, we measured Cl-/HCO3- exchanger activity in SMG acinar cells from Ae2-/- mice, which only express Ae4, and found that the Ae4-mediated activity was increased in response to β-adrenergic receptor stimulation. Moreover, pretreatment with H89, an inhibitor of the cAMP-activated kinase (PKA), prevented the stimulation of Ae4 exchangers. We then expressed Ae4 in CHO-K1 cells and found that the Ae4-mediated activity was increased when Ae4 is co-expressed with the catalytic subunit of PKA (PKAc), which is constitutively active. Ae4 sequence analysis showed two potential PKA phosphorylation serine residues located at the intracellular N-terminal domain according to a homology model of Ae4. N-terminal domain Ser residues were mutated to alanine (S173A and S273A, respectively), where the Cl-/HCO3- exchanger activity displayed by the mutant S173A was not activated by PKA. Conversely, S273A mutant kept the PKA dependency. Together, we conclude that Ae4 is stimulated by PKA in SMG acinar cells by a mechanism that probably depends on the phosphorylation of S173.

2008 ◽  
Vol 295 (5) ◽  
pp. C1385-C1398 ◽  
Author(s):  
Clint Perry ◽  
David O. Quissell ◽  
Mary E. Reyland ◽  
Irina I. Grichtchenko

Cholinergic agonists are major stimuli for fluid secretion in parotid acinar cells. Saliva bicarbonate is essential for maintaining oral health. Electrogenic and electroneutral Na+-HCO3− cotransporters (NBCe1 and NBCn1) are abundant in parotid glands. We previously reported that angiotensin regulates NBCe1 by endocytosis in Xenopus oocytes. Here, we studied cholinergic regulation of NBCe1 and NBCn1 membrane trafficking by confocal fluorescent microscopy and surface biotinylation in parotid epithelial cells. NBCe1 and NBCn1 colocalized with E-cadherin monoclonal antibody at the basolateral membrane (BLM) in polarized ParC5 cells. Inhibition of constitutive recycling with the carboxylic ionophore monensin or the calmodulin antagonist W-13 caused NBCe1 to accumulate in early endosomes with a parallel loss from the BLM, suggesting that NBCe1 is constitutively endocytosed. Carbachol and PMA likewise caused redistribution of NBCe1 from BLM to early endosomes. The PKC inhibitor, GF-109203X, blocked this redistribution, indicating a role for PKC. In contrast, BLM NBCn1 was not downregulated in parotid acinar cells treated with constitutive recycling inhibitors, cholinergic stimulators, or PMA. We likewise demonstrate striking differences in regulation of membrane trafficking of NBCe1 vs. NBCn1 in resting and stimulated cells. We speculate that endocytosis of NBCe1, which coincides with the transition to a steady-state phase of stimulated fluid secretion, could be a part of acinar cell adjustment to a continuous secretory response. Stable association of NBCn1 at the membrane may facilitate constitutive uptake of HCO3− across the BLM, thus supporting HCO3− luminal secretion and/or maintaining acid-base homeostasis in stimulated cells.


1992 ◽  
Vol 263 (6) ◽  
pp. G823-G837 ◽  
Author(s):  
B. Nauntofte

The primary secretion from exocrine gland cells is a fluid rich in Na+ and Cl- with a plasmalike ionic composition. Activation of specific receptors on the plasma membrane by hormones and neurotransmitters, which leads to activation of the phosphoinositol metabolism, results in release of Ca2+ from internal Ca2+ stores. Intracellular free Ca2+ concentration ([Ca2+]i) then rises simultaneously at both the basolateral and luminal parts of the acinar cell, reaching maximum values within 1 s after stimulation. In parotid acinar cells, increased [Ca2+]i activates the opening of maxi K+ channels located on the basolateral membrane and Cl- channels presumably located on the luminal membrane, resulting in rapid loss of K+ and Cl- and water and cell shrinkage. Extracellular electroneutrality is maintained by a paracellular Na+ flux into the lumen. Because of the simultaneous activation of K+ and Cl- channels, secretion occurs at a virtually constant membrane potential of about -60 mV. After maximal muscarinic cholinergic stimulation, loss of K+, Cl-, and water results in an approximate 25% reduction in cell volume within 10-15 s after receptor activation. Concomitant with loss of Cl-, there is a loss of HCO3- from the cell, causing a decrease in intracellular pH of 0.1 pH units because of the carbonic anhydrase-mediated conversion of CO2 into H+ and HCO3-. H+ generated from the metabolism and HCO3- production is compensated for by extrusion of H+ by a Na(+)-H+ exchange mechanism, which is responsible for approximately 75% of net Na+ gain that occurs after stimulation. Increased [Na+]i activates the Na(+)-K+ pump, which in turn extrudes Na+ from the cells. In both the unstimulated and stimulated states, cellular production of HCO3- can drive a net uptake of Cl- via the Cl(-)-HCO3- exchange mechanism operating in parallel with the Na(+)-H+ exchanger. The operation of the Cl(-)-HCO3- exchanger is, together with a Na(+)-K(+)-2Cl- cotransport system, essential for maintainance of a high [Cl-]i both in the unstimulated state and during Cl- reuptake.


1991 ◽  
Vol 261 (4) ◽  
pp. G570-G577
Author(s):  
T. Ishikawa ◽  
T. Kanno

Efflux and influx of K+ across the basolateral membrane of acinar cells were continuously computed from the change in K+ concentration in the perfusate collected from the portal vein of the isolated perfused rat pancreas. Continuous stimulation with different concentrations of COOH-terminal octapeptide of cholecystokinin (CCK-8) caused characteristic patterns of K+ flux and fluid secretion as follows: 1) stimulation with 10 pM CCK-8 induced a gradual and small increase in K+ influx and sustained fluid secretion; 2) stimulation with 100 pM CCK-8 caused an initial transient K+ efflux followed by a secondary slow K+ influx and sustained fluid secretion; 3) stimulation with 1 nM CCK-8 also induced an initial transient K+ efflux followed by a secondary slow K+ influx, whereas there was only a slight transient increase in fluid secretion. Ouabain abolished the CCK-8-induced K+ influx, but furosemide had little, if any, effect on the CCK-8-induced K+ flux and fluid secretion. Complete replacement of Cl- with equimolar NO3- had little effect on the CCK-8-induced K+ influx. These results suggest that CCK-8 activates not only passive K+ transport but also an ouabain sensitive Na(+)-K+ pump and that the furosemide-sensitive Na(+)-K(+)-2Cl- symport may not play a significant role in CCK-8-induced K+ transport.


1996 ◽  
Vol 271 (35) ◽  
pp. 21490-21497 ◽  
Author(s):  
Serge Moffett ◽  
Lynda Adam ◽  
Hélène Bonin ◽  
Thomas P. Loisel ◽  
Michel Bouvier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document