ADAM-15 inhibits wound healing in human intestinal epithelial cell monolayers

2005 ◽  
Vol 288 (2) ◽  
pp. G346-G353 ◽  
Author(s):  
Laetitia Charrier ◽  
Yutao Yan ◽  
Adel Driss ◽  
Christian L. Laboisse ◽  
Shanthi V. Sitaraman ◽  
...  

The disintegrin metalloproteases (or ADAMs) are membrane-anchored glycoproteins that have been implicated in cell-cell or cell-matrix interactions and in proteolysis of molecules on the cell surface. The expression and/or the pathophysiological implications of ADAMs are not known in intestinal epithelial cells. Therefore, our aim was to investigate the expression and the role of ADAMs in intestinal epithelial cells. Expression of ADAMs was assessed by RT-PCR, Western blot analysis, and immunufluorescence experiments. Wound-healing experiments were performed by using the electric cell substrate impedence sensing technology. Our results showed that ADAMs-10, -12, and -15 mRNA are expressed in the colonic human cell lines Caco2-BBE and HT29-Cl.19A. An ADAM-15 complementary DNA cloned from Caco2-BBE poly(A)+ RNA, and encompassing the entire coding region, was found to be shorter and to present a different region encoding the cytoplasmic tail compared with ADAM-15 sequence deposited in the database. In Caco2-BBE cells and colonic epithelial cells, ADAM-15 protein was found in the apical, basolateral, and intracellular compartments. We also showed that the overexpression of ADAM-15 reduced cell migration in a wound-healing assay in Caco2-BBE monolayers. Our data show that 1) ADAM-15 is expressed in human intestinal epithelia, 2) a new variant of ADAM-15 is expressed in a human intestinal epithelial cell line, and 3) ADAM-15 is involved in intestinal epithelial cells wound-healing processes. Together, these results suggest that ADAM-15 may have important pathophysiological roles in intestinal cells.

2005 ◽  
Vol 71 (12) ◽  
pp. 8855-8863 ◽  
Author(s):  
Anne-Katharina Sonntag ◽  
Martina Bielaszewska ◽  
Alexander Mellmann ◽  
Nadine Dierksen ◽  
Peter Schierack ◽  
...  

ABSTRACT Thirteen Escherichia coli strains harboring stx 2e were isolated from 11,056 human stools. This frequency corresponded to the presence of the stx 2e allele in 1.7% of all Shiga toxin-producing E. coli (STEC) strains. The strains harboring stx 2e were associated with mild diarrhea (n = 9) or asymptomatic infections (n= 4). Because STEC isolates possessing stx 2e are porcine pathogens, we compared the human STEC isolates with stx 2e-harboring E. coli isolated from piglets with edema disease and postweaning diarrhea. All pig isolates possessed the gene encoding the F18 adhesin, and the majority possessed adhesin involved in diffuse adherence; these adhesins were absent from all the human STEC isolates. In contrast, the high-pathogenicity island encoding an iron uptake system was found only in human isolates. Host-specific patterns of interaction with intestinal epithelial cells were observed. All human isolates adhered to human intestinal epithelial cell lines T84 and HCT-8 but not to pig intestinal epithelial cell line IPEC-J2. In contrast, the pig isolates completely lysed human epithelial cells but not IPEC-J2 cells, to which most of them adhered. Our data demonstrate that E. coli isolates producing Shiga toxin 2e have imported specific virulence and fitness determinants which allow them to adapt to the specific hosts in which they cause various forms of disease.


Author(s):  
Rino P. Donato ◽  
Adaweyah El-Merhibi ◽  
Batjargal Gundsambuu ◽  
Kai Yan Mak ◽  
Emma R. Formosa ◽  
...  

1992 ◽  
Vol 83 (s27) ◽  
pp. 1P-1P
Author(s):  
D Gleeson ◽  
JC Osypiw ◽  
PW Pemberton ◽  
RW Lobley ◽  
RFT McMahon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document