Messenger role of calcium in function of pancreatic acinar cells

1980 ◽  
Vol 239 (5) ◽  
pp. G335-G347
Author(s):  
I. Schulz

Enzyme secretion from the exocrine pancreas is elicited by a) cholinergic stimulants, b) hormones belonging to the family of pancreozymin, c) some amphibian peptides such as bombesin, eledoisin, and physalaemin, and d) secretin and vasoactive intestinal polypeptide. Whereas the mechanism of the group d hormones in stimulating enzyme secretion involves adenosine 3',5'-cyclic monophosphate, the others seem to use a common pathway involving Ca2+ as intracellular messenger and probably guanosine 3',5'-cyclic monophosphate as modulator of their action. Their effects can be ascribed to two processes. One pathway involves release of Ca2+ from an intracellular store that is most likely located in the plasma membrane. This phase is independent of extracellular Ca2+ and leads to a rise of guanosine 3',5'-cyclic monophosphate. The other pathway is characterized by an increased permeability of the plasma membrane for Ca2+ and is necessary for sustained secretion. Both pathways lead to an increase cytosolic-free Ca2+ concentration. Ca2+ is either directly involved in fusion of zymogen granules with the luminal cell membrane or triggers events that lead to exocytosis. Furthermore, augmented cytosolic-free calcium concentration a) increased the plasma membrane permeability for Na+, Cl-, and K+, which leads to depolarization of the cell, and b) induces uncoupling of neighboring acinar cells.

1981 ◽  
Vol 240 (4) ◽  
pp. G281-G289
Author(s):  
H. Wakasugi ◽  
H. Stolze ◽  
W. Haase ◽  
I. Schulz

Addition of 0.1 mmol/l of La3+ to pancreatic acinar cells increased both the rate and extent of 45Ca+ uptake. Addition of 0.3 mmol/l La3+ did not change cellular 45Ca2+, whereas 1, 2, and 5 mmol/l gradually decreased it. If carbamylcholine (CCh) or the octapeptide of cholecystokinin-pancreozymin (CCK-OP) was added in the presence of low La3+ concentrations (0.1 and 0.3 mmol/l) to 45Ca2+-equilibrated cells, secretagogue-induced 45Ca2+ release-reuptake was not inhibited. At 1 and 2 mol/l of La3+, however, secretagogue-induced 45Ca2+ release was abolished, whereas uptake of 45Ca2+ was still increased by CCK-OP and CCh. At 5 mmol/l La3+, the effects of secretagogues were completely abolished. In the presence of 2 mmol/l La3+, the atropine-induced 45Ca2+ uptake in CCh-pretreated cells and the dibutyryl guanosine 3',5'-cyclic monophosphate-induced 45Ca2+ uptake in CCK-OP-pretreated cells were highly reduced. The data are interpreted to support our assumption that CCK-OP and CCh increase the plasma membrane permeability to Ca2+ in pancreatic acinar cells in addition to their action to initiate release of CA2+ from an intracellular Ca2+ trigger pool.


1990 ◽  
Vol 258 (1) ◽  
pp. C147-C155 ◽  
Author(s):  
Y. Tsunoda ◽  
E. L. Stuenkel ◽  
J. A. Williams

Cytoplasmic free calcium concentration ((Ca2+]i) was evaluated by dual-wavelength microspectrofluorometry of fura-2-loaded individual rat pancreatic acinar cells. Resting [Ca2+]i in unstimulated acini was 94.1 +/- 4.1 nM. Stimulation with high concentrations of cholecystokinin (CCK, 100 pM to 1 nM) led to an immediate rise in [Ca2+]i to 400-1,000 nM followed by a fall within 2-5 min to a plateau only slightly above the prestimulation level. Lower and more physiological concentrations of CCK (1-30 pM), after a latent period of 60-90 s, induced a smaller sustained increase in [Ca2+]i (30-40 nM) with superimposed repetitive transient [Ca2+]i spikes. These oscillations averaged 120-150 nM in amplitude, occurred at a frequency which averaged 1.5 times/min, and were maintained as long as the stimulus was applied. Similar [Ca2+]i oscillations were observed when acini were stimulated with submaximal concentrations of carbamylcholine (0.1-1 microM) and neuromedin C (0.1-1 nM). Intracellular Ca2+ stores were not depleted during [Ca2+] oscillations, since a subsequent increase to 1 nM CCK led to an immediate rise in [Ca2+]i indistinguishable from the response of cells initially stimulated at this concentration. Although extracellular Ca2+ was required for maintenance of frequency of the spikes, the major source of Ca2+ utilized for oscillations was intracellular, since elimination of medium Ca2+ or Ca2+ entry blockade with lanthanum failed to inhibit oscillations. Vasoactive intestinal polypeptide (10 nM) and high K+ (50 mM) did not affect [Ca2+]i oscillations. Antimycin (10 microM), which depletes cytoplasmic ATP, increased basal [Ca2+]i and inhibited the oscillations.(ABSTRACT TRUNCATED AT 250 WORDS)


2008 ◽  
Vol 77 (2) ◽  
pp. 733-738 ◽  
Author(s):  
A. Mattana ◽  
L. Alberti ◽  
G. Delogu ◽  
P. L. Fiori ◽  
P. Cappuccinelli

ABSTRACT The effect of Acanthamoeba on human platelets and erythrocytes has not been fully elucidated. This paper reports that cell-free supernatants prepared from A. castellanii can activate human platelets, causing both a significant increase in the cytosolic free-calcium concentration and platelet aggregation. In addition, we demonstrated that platelet activation depends on the activity of ADP constitutively secreted into the medium by trophozoites. This study also showed that A. castellanii can affect human red blood cells, causing hemolysis, and provided evidence that hemolysis occurs in both contact-dependent and contact-independent ways; there are differences in kinetics, hemolytic activity, and calcium dependency between the contact-dependent and contact-independent mechanisms. Partial characterization of contact-independent hemolysis indicated that ADP does not affect the plasma membrane permeability of erythrocytes and that heat treatment of amoebic cell-free supernatant abolishes its hemolytic activity. These findings suggest that some heat-labile molecules released by A. castellanii trophozoites are involved in this phenomenon. Finally, our data suggest that human platelets and erythrocytes may be potential cell targets during Acanthamoeba infection.


1997 ◽  
Vol 272 (6) ◽  
pp. G1489-G1498 ◽  
Author(s):  
H. Klonowski-Stumpe ◽  
R. Schreiber ◽  
M. Grolik ◽  
H. U. Schulz ◽  
D. Haussinger ◽  
...  

The present study evaluates the effect of free radicals generated by xanthine oxidase-catalyzed oxidation of hypoxanthine on cellular function of isolated rat pancreatic acinar cells. The results show that a rapid and sustained increase in intracellular Ca2+ concentration ([Ca2+]i) preceded all other morphological and functional alterations investigated. Radical-induced [Ca2+]i increase was largely inhibited by 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester, which prevents Ca2+ release from intracellular stores, but not by Ca2(+)-depleted medium. Radicals released Ca2+ from thapsigargin-insensitive, ryanodine-sensitive intracellular stores, whereas the secretagogue caerulein at physiological concentrations mainly released Ca2+ from thapsigargin-sensitive stores. In contrast to effects of the secretagogue, radical-induced Ca2+ changes did not cause luminal protein secretion but cell death. In single-cell measurements, both secretagogue and radicals induced oscillations of [Ca2+]i. Radical-induced oscillations had a lower frequency but similar amplitude when compared with caerulein-induced oscillations. 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid and ryanodine, which prevented the radical-induced Ca2+ increase without altering the generation of radicals, markedly reduced the radical-induced cell damage. These results suggest that the Ca2+ increase mediates the radical-induced cell injury. The studies also indicate that not only the extent and duration but also the origin of [Ca2+]i release as well as the frequency of Ca2+ oscillations may determine whether a pancreatic acinar cell will secrete or die.


1994 ◽  
Vol 124 (1) ◽  
pp. 43-53 ◽  
Author(s):  
BP Jena ◽  
FD Gumkowski ◽  
EM Konieczko ◽  
GF von Mollard ◽  
R Jahn ◽  
...  

Regulated secretion from pancreatic acinar cells occurs by exocytosis of zymogen granules (ZG) at the apical plasmalemma. ZGs originate from the TGN and undergo prolonged maturation and condensation. After exocytosis, the zymogen granule membrane (ZGM) is retrieved from the plasma membrane and ultimately reaches the TGN. In this study, we analyzed the fate of a low M(r) GTP-binding protein during induced exocytosis and membrane retrieval using immunoblots as well as light and electron microscopic immunocytochemistry. This 27-kD protein, identified by a monoclonal antibody that recognizes rab3A and B, may be a novel rab3 isoform. In resting acinar cells, the rab3-like protein was detected primarily on the cytoplasmic face of ZGs, with little labeling of the Golgi complex and no significant labeling of the apical plasmalemma or any other intracellular membranes. Stimulation of pancreatic lobules in vitro by carbamylcholine for 15 min, resulted in massive exocytosis that led to a near doubling of the area of the apical plasma membrane. However, no relocation of the rab3-like protein to the apical plasmalemma was seen. After 3 h of induced exocytosis, during which time approximately 90% of the ZGs is released, the rab3-like protein appeared to translocate to small vesicles and newly forming secretory granules in the TGN. No significant increase of the rab3-like protein was found in the cytosolic fraction at any time during stimulation. Since the protein is not detected on the apical plasmalemma after stimulation, we conclude that recycling may involve a membrane dissociation-association cycle that accompanies regulated exocytosis.


1993 ◽  
Vol 290 (2) ◽  
pp. 617-622 ◽  
Author(s):  
E Poch ◽  
A Botey ◽  
J Gaya ◽  
A Cases ◽  
F Rivera ◽  
...  

The aim of the present study was to evaluate the regulatory relationship between the cytosolic free calcium concentration ([Ca2+]i and cytosolic pH (pHi). [Ca2+]i and pHi were measured using the fluorescent dyes fura-2 and BCECF [2′,7′-bis-(carboxyethyl)-5,6-carboxyfluorescein] respectively. In a medium with 1 mmol/l extracellular calcium, thrombin (2.5 units/ml) induced an increment in [Ca2+]i of 638 +/- 31 nmol/l (n = 5) and an intracellular alkalinization of 0.14 +/- 0.01 pH units (n = 8). Both responses were dependent on the concentration of thrombin, displaying a sigmoidal dose-response pattern. The intracellular alkalinization was dependent upon extracellular Na+ and was amiloride-sensitive, indicating that it was mediated by activation of the Na+/H+ exchanger. When extracellular calcium was chelated with EGTA prior to the addition of thrombin, the intracellular alkalinization was not affected (0.15 +/- 0.02 at 2.5 units/ml thrombin, n = 8). Under these circumstances, the [Ca2+]i increment represents mobilization from internal stores, reaching 157 +/- 42 nmol/l at 2.5 units/ml thrombin. When platelets were preloaded with the intracellular calcium chelator MAPTAM (1,2-bis-5-methylaminophenoxylethane-NNN'-tetraacetoxymethyl acetate) to block the increase in [Ca2+]i induced by thrombin, no increment in pHi was observed. Moreover, MAPTAM-loaded calcium-depleted platelets had a basal pHi that was more acidic than in the presence of 1 mmol/l extracellular calcium (6.93 +/- 0.09 versus 7.14 +/- 0.01, n = 26, P < 0.001). Ionomycin induced an elevation of [Ca2+]i that was accompanied by a concomitant increase in pHi, which was Na(+)-dependent and amiloride-sensitive. [Ca2+]i and pHi increases induced by ionomycin were both dependent on the concentration of ionomycin. In conclusion, an increase in [Ca2+]i is necessary for the agonist-induced activation of the Na+/H+ exchanger in platelets. Non-agonist-induced increases in [Ca2+]i seems to prompt activation of the exchanger. In addition, Ca(2+)-depleted platelets have a more acidic basal pHi, indicating that the basal level of [Ca2+]i is also important for maintaining the basal pHi.


2006 ◽  
Vol 291 (1) ◽  
pp. G146-G155 ◽  
Author(s):  
Jong Hak Won ◽  
David I. Yule

In nonexcitable cells, such as exocrine cells from the pancreas and salivary glands, agonist-stimulated Ca2+ signals consist of both Ca2+ release and Ca2+ influx. We have investigated the contribution of these processes to membrane-localized Ca2+ signals in pancreatic and parotid acinar cells using total internal reflection fluorescence (TIRF) microscopy (TIRFM). This technique allows imaging with unsurpassed resolution in a limited zone at the interface of the plasma membrane and the coverslip. In TIRFM mode, physiological agonist stimulation resulted in Ca2+ oscillations in both pancreas and parotid with qualitatively similar characteristics to those reported using conventional wide-field microscopy (WFM). Because local Ca2+ release in the TIRF zone would be expected to saturate the Ca2+ indicator (Fluo-4), these data suggest that Ca2+ release is occurring some distance from the area subjected to the measurement. When acini were stimulated with supermaximal concentrations of agonists, an initial peak, largely due to Ca2+ release, followed by a substantial, maintained plateau phase indicative of Ca2+ entry, was observed. The contribution of Ca2+ influx and Ca2+ release in isolation to these near-plasma membrane Ca2+ signals was investigated by using a Ca2+ readmission protocol. In the absence of extracellular Ca2+, the profile and magnitude of the initial Ca2+ release following stimulation with maximal concentrations of agonist or after SERCA pump inhibition were similar to those obtained with WFM in both pancreas and parotid acini. In contrast, when Ca2+ influx was isolated by subsequent Ca2+ readmission, the Ca2+ signals evoked were more robust than those measured with WFM. Furthermore, in parotid acinar cells, Ca2+ readdition often resulted in the apparent saturation of Fluo-4 but not of the low-affinity dye Fluo-4-FF. Interestingly, Ca2+ influx as measured by this protocol in parotid acinar cells was substantially greater than that initiated in pancreatic acinar cells. Indeed, robust Ca2+ influx was observed in parotid acinar cells even at low physiological concentrations of agonist. These data indicate that TIRFM is a useful tool to monitor agonist-stimulated near-membrane Ca2+ signals mediated by Ca2+ influx in exocrine acinar cells. In addition, TIRFM reveals that the extent of Ca2+ influx in parotid acinar cells is greater than pancreatic acinar cells when compared using identical methodologies.


Sign in / Sign up

Export Citation Format

Share Document