Plasma pancreatic trypsinogens in chronic renal failure and after nephrectomy

1982 ◽  
Vol 242 (2) ◽  
pp. G177-G182
Author(s):  
M. C. Geokas ◽  
R. Reidelberger ◽  
M. O'Rourke ◽  
E. Passaro ◽  
C. Largman

The kidney has previously been shown to be a major site for the plasma clearance of pancreatic trypsinogens in the rat. This study investigated plasma concentrations of anionic and cationic trypsinogen in chronic renal failure and anephric patients. Plasma concentrations were significantly elevated in both groups of patients. Hemodialysis did not change their plasma levels. The plasma levels of anionic and cationic trypsinogens were highly correlated in patients and normal subjects; however, the relative concentrations of anionic trypsinogen were significantly higher in renal failure patients. This suggests that in patients with renal failure the secondary clearance mechanisms for these plasma proteins more efficiently clear cationic molecules. In normal dogs, intravenous infusion of synthetic octapeptide of cholecystokinin (CCK-8) resulted in small transitory increases in plasma trypsinogen levels. After nephrectomy, basal levels of anionic and cationic trypsinogen were elevated, and intravenous infusion of CCK-8 resulted in prolonged, high levels of plasma trypsinogens.

1980 ◽  
Vol 3 (1) ◽  
pp. 18-22
Author(s):  
F. Marumo ◽  
T. Sakai ◽  
M. Shirataka

The concentration of cyclic AMP which is known as an intracellular mediator of hormone action increased in the plasma of patients with chronic renal failure (CRF). In the present study, the plasma concentration of cyclic AMP significantly correlated not only with serum, creatinine, and urea levels, but also with plasma PTH and glucagon in patients with CRF. Furthermore, plasma concentrations of PTH and glucagon correlated with the serum creatinine concentration to a significant extent. To discuss the cause of the increased cyclic AMP concentration in plasma of patients with CRF, multivariate analyses were carried out on the obtained clinical data from patients and normal subjects. In the factor analysis on the clinical data from 61 subjects, cyclic AMP, creatinine and BUN correlated with the first factor and PTH correlated with the second factor. The cumulative contribution ratio by the second factor was 76%. The results of the cluster analysis indicated that cyclic AMP, creatinine, and BUN formed a cluster and PTH glucagon made another cluster. These results suggest that the elevated plasma concentration of cyclic AMP in patients with CRF was mainly introduced not by overproduction but by the retention of cyclic AMP due to the decreased renal function.


1992 ◽  
Vol 83 (5) ◽  
pp. 583-587 ◽  
Author(s):  
Nicholas B. Argent ◽  
Robert Wilkinson ◽  
Peter H. Baylis

1. The metabolic clearance rate of arginine vasopressin was determined using a constant infusion technique in normal subjects and patients with chronic renal failure immediately before commencing dialysis. Endogenous arginine vasopressin was suppressed in all subjects before the infusion with a water load. 2. Plasma arginine vasopressin concentrations were determined using a sensitive and specific radioimmunoassay after Florisil extraction. The detection limit of the assay was 0.3 pmol/l, and intra- and inter-assay coefficients of variation at 2 pmol/l were 9.7% and 15.3%, respectively. 3. In normal subjects, the metabolic clearance rate was determined at two infusion rates producing steady-state concentrations of arginine vasopressin of 1.3 and 4.4 pmol/l. In the patients with renal failure, a single infusion rate was used, producing a steady-state concentration of 1.5 pmol/l. 4. At comparable plasma arginine vasopressin concentrations, metabolic clearance rate was significantly reduced in patients with renal failure (normal 1168 ± 235 ml/min versus renal failure 584 ± 169 ml/min; means ± sd; P<0.001). 5. Free water clearance was significantly reduced in normal subjects during the arginine vasopressin infusion from 8.19 ± 2.61 to −1.41 ± 0.51 ml/min (P<0.001), but was unchanged in the patients with renal failure after attaining comparable plasma arginine vasopressin concentrations. 6. In normal subjects there was a small but significant fall in metabolic clearance rate at the higher steady-state arginine vasopressin concentration (1168 ± 235 ml/min at 1.3 pmol/l versus 1059 ± 269 ml/min at 4.4 pmol/l; P = 0.016). 7. Our results show that the metabolic clearance rate of arginine vasopressin is reduced by approximately 50% in severe chronic renal failure. This alone may account for the raised plasma concentrations of the hormone seen in this condition.


1989 ◽  
Vol 77 (5) ◽  
pp. 573-579 ◽  
Author(s):  
M. G. Buckley ◽  
G. A. Sagnella ◽  
N. D. Markandu ◽  
D. R. J. Singer ◽  
G. A. MacGregor

1. Plasma levels of immunoreactive N-terminal pro-atrial natriuretic peptide (N-terminal ANP) have been measured in 25 normal subjects, 29 patients with essential hypertension, six cardiac transplant recipients, seven patients with dialysis-independent chronic renal failure and 11 patients with haemodialysis-dependent chronic renal failure. Plasma was extracted on Sep-Pak cartridges and N-terminal ANP immunoreactivity was measured using an antibody directed against pro-ANP (1–30). 2. Plasma levels of TV-terminal ANP (means ± sem) were 235.3 ± 19.2 pg/ml in normal subjects and were significantly raised in patients with essential hypertension (363.6 ± 36.3 pg/ml), in cardiac transplant recipients (1240.0 ± 196.2 pg/ml), in patients with chronic renal failure not requiring dialysis (1636.6 ± 488.4 pg/ml) and patients with chronic renal failure on maintenance haemodialysis (10 336.1 ± 2043.7 pg/ml). 3. There were positive and significant correlations between the plasma levels of TV-terminal ANP and α-human ANP (α-hANP) with individual correlation coefficients of 0.68 within the normal subjects, 0.47 in patients with essential hypertension, 0.78 in patients with dialysis-independent chronic renal failure and 0.68 in patients with haemodialysis-dependent chronic renal failure (P < 0.05 in every case). 4. Gel filtration behaviour on Sephadex G-50 of the immunoreactive N-terminal ANP from Sep-Pak extracts of plasma from normal subjects or patients was consistent with a single peak having an elution volume corresponding to that of human pro-ANP (1–67) standard. 5. These studies demonstrate that the N-terminal pro-ANP peptide is co-secreted with α-hANP in both normal subjects and patients with cardiovascular/renal disease. The higher levels of the N-terminal ANP may reflect differences in the rate of elimination from the circulation but the exact structure and functional significance of the circulating N-terminal ANP remains to be established.


1994 ◽  
Vol 87 (3) ◽  
pp. 311-317 ◽  
Author(s):  
M. G. Buckley ◽  
N. D. Markandu ◽  
G. A. Sagnella ◽  
G. A. MacGregor

1. The aim of this study was to determine plasma levels of N-terminal atrial natriuretic peptide and atrial natriuretic peptide in normal subjects and in patients with essential hypertension, cardiac transplant and chronic renal failure, using radioimmunoassays directed towards the mid-portion pro-atrial natriuretic peptide (31-67) and pro-atrial natriuretic peptide (1-30) of the N-terminal atrial natriuretic peptide and atrial natriuretic peptide (99-126). The circulating form(s) of the immunoreactive N-terminal atrial natriuretic peptide in plasma extracts has been investigated using all three radioimmunoassays by means of gel filtration chromatography to further clarify the major immunoreactive molecular circulating form(s) of N-terminal atrial natriuretic peptide in man. 2. The plasma level (mean ± SEM) of N-terminal pro-atrial natriuretic peptide (31-67) in the normal subjects was 547.2 ± 32.7 pg/ml (n = 36) and was significantly elevated in patients with essential hypertension (730.2 ± 72.3 pg/ml, P < 0.025, n = 39), in cardiac transplant recipients (3214.0 ± 432.2 pg/ml, P < 0.001, n = 9) and in patients with chronic renal failure (3571.8 ± 474.1 pg/ml, P < 0.001, n = 11). Plasma levels of N-terminal pro-atrial natriuretic peptide (1-30) and atrial natriuretic peptide were similarly elevated in the same patient groups when compared with the mean plasma values in the normal subjects. 3. There were positive associations between pro-atrial natriuretic peptide (31-67) and atrial natriuretic peptide, pro-atrial natriuretic peptide (31-67) and pro-atrial natriuretic peptide (1-30) and between pro-atrial natriuretic peptide (1-30) and atrial natriuretic peptide in the normal subjects, hypertensive patients, cardiac transplant recipients and patients with chronic renal failure. The correlation coefficient for all groups taken together was 0.86 (P < 0.001. n = 95) for pro-atrial natriuretic peptide (31-67) and atrial natriuretic peptide, 0.93 (P < 0.001, n = 95) for pro-atrial natriuretic peptide (31-67) and pro-atrial natriuretic peptide (1-30), and 0.82 (p < 0.001, n = 95) for pro-atrial natriuretic peptide (1-30) and atrial natriuretic peptide. 4. Gel filtration of extracted plasma from cardiac transplant patients and patients with chronic renal failure indicated a single peak of immunoreactivity for N-terminal atrial natriuretic peptide using both the pro-atrial natriuretic peptide (31-67) and pro-atrial natriuretic peptide (1-30) radioimmunoassays, suggesting a major single high-molecular-mass circulating immunoreactive N-terminal atrial natriuretic peptide, probably pro-atrial natriuretic peptide (1-98). Atrial natriuretic peptide immunoreactivity, as measured by the radioimmunoassay for atrial natriuretic peptide (99-126), showed a separate and distinct peak from that of the N-terminal atrial natriuretic peptide, which co-eluted with the synthetic human standard atrial natriuretic peptide (99-126). 5. These results show that immunoreactive N-terminal atrial natriuretic peptide and atrial natriuretic peptide are elevated in patients with essential hypertension, in cardiac transplant recipients and in patients with chronic renal failure. The major immunoreactive form of N-terminal atrial natriuretic peptide cross-reacting in both the pro-atrial natriuretic peptide (31-67) and pro-atrial natriuretic peptide (1-30) radioimmunoassays is of a high molecular mass, probably pro-atrial natriuretic peptide (1-98). Since pro-atrial natriuretic peptide (1-98) is unlikely to cross-react identically with antibodies for pro-atrial natriuretic peptide (31-67) or pro-atrial natriuretic peptide (1-30), this could account for the differences in plasma levels obtained by the assays for pro-atrial natriuretic peptide (31-67) and pro-atrial natriuretic peptide (1-30).


1999 ◽  
Vol 82 (11) ◽  
pp. 1428-1432 ◽  
Author(s):  
Cheryl Scott ◽  
Francesco Salerno ◽  
Elettra Lorenzano ◽  
Werner Müller-Esterl ◽  
Angelo Agostoni ◽  
...  

SummaryLittle is known about the regulation of high-molecular-weight-kininogen (HK) and low-molecular-weight-kininogen (LK) or the relationship of each to the degree of liver function impairment in patients with cirrhosis. In this study, we evaluated HK and LK quantitatively by a recently described particle concentration fluorescence immunoassay (PCFIA) and qualitatively by SDS PAGE and immunoblotting analyses in plasma from 33 patients with cirrhosis presenting various degrees of impairment of liver function. Thirty-three healthy subjects served as normal controls. Patients with cirrhosis had significantly lower plasma levels of HK (median 49 μg/ml [range 22-99 μg/ml]) and LK (58 μg/ml [15-100 μg/ml]) than normal subjects (HK 83 μg/ml [65-115 μg/ml]; LK 80 μg/ml [45-120 μg/ml]) (p < 0.0001). The plasma concentrations of HK and LK were directly related to plasma levels of cholinesterase (P < 0.0001) and albumin (P < 0.0001 and P < 0.001) and inversely to the Child-Pugh score (P < 0.0001) and to prothrombin time ratio (P < 0.0001) (reflecting the clinical and laboratory abnormalities in liver disease). Similar to normal individuals, in patients with cirrhosis, plasma HK and LK levels paralleled one another, suggesting that a coordinate regulation of those proteins persists in liver disease. SDS PAGE and immunoblotting analyses of kininogens in cirrhotic plasma showed a pattern similar to that observed in normal controls for LK (a single band at 66 kDa) with some lower molecular weight forms noted in cirrhotic plasma. A slight increase of cleavage of HK (a major band at 130 kDa and a faint but increased band at 107 kDa) was evident. The increased cleavage of HK was confirmed by the lower cleaved kininogen index (CKI), as compared to normal controls. These data suggest a defect in hepatic synthesis as well as increased destructive cleavage of both kininogens in plasma from patients with cirrhosis. The decrease of important regulatory proteins like kininogens may contribute to the imbalance in coagulation and fibrinolytic systems, which frequently occurs in cirrhotic patients.


1988 ◽  
Vol 60 (02) ◽  
pp. 205-208 ◽  
Author(s):  
Paul A Kyrle ◽  
Felix Stockenhuber ◽  
Brigitte Brenner ◽  
Heinz Gössinger ◽  
Christian Korninger ◽  
...  

SummaryThe formation of prostacyclin (PGI2) and thromboxane A2 and the release of beta-thromboglobulin (beta-TG) at the site of platelet-vessel wall interaction, i.e. in blood emerging from a standardized injury of the micro vasculature made to determine bleeding time, was studied in patients with end-stage chronic renal failure undergoing regular haemodialysis and in normal subjects. In the uraemic patients, levels of 6-keto-prostaglandin F1α (6-keto-PGF1α) were 1.3-fold to 6.3-fold higher than the corresponding values in the control subjects indicating an increased PGI2 formation in chronic uraemia. Formation of thromboxane B2 (TxB2) at the site of plug formation in vivo and during whole blood clotting in vitro was similar in the uraemic subjects and in the normals excluding a major defect in platelet prostaglandin metabolism in chronic renal failure. Significantly smaller amounts of beta-TG were found in blood obtained from the site of vascular injury as well as after in vitro blood clotting in patients with chronic renal failure indicating an impairment of the a-granule release in chronic uraemia. We therefore conclude that the haemorrhagic diathesis commonly seen in patients with chronic renal failure is - at least partially - due to an acquired defect of the platelet a-granule release and an increased generation of PGI2 in the micro vasculature.


1987 ◽  
Vol 57 (03) ◽  
pp. 263-268 ◽  
Author(s):  
P Toulon ◽  
C Jacquot ◽  
L Capron ◽  
M -O Frydman ◽  
D Vignon ◽  
...  

SummaryHeparin enhances the inhibition rate of thrombin by both antithrombin III (AT III) and heparin cofactor II (HC II). We studied the activity of these two plasma proteins in patients with chronic renal failure (CRF) undergoing regular hemodialysis as their heparin requirements varied widely. In 77 normal blood donors, normal ranges (mean ± 2 SD) were 82-122% for AT III and 65-145% for HC II. When compared with these controls 82 dialyzed CRF patients had a subnormal AT III activity and a significantly (p <0.001) lower HC II activity. To evaluate the effect of hemodialysis we compared AT III, HC II and total proteins in plasma before and after dialysis in. 24 patients (12 with normal and 12 with low basal HC II activity). AT III and HC II activities significantly (p <0.001) increased in absolute value. When related to total plasma proteins, in order to suppress the influence of hemoconcentration induced by dialysis, AT III decreased significantly (p <0.01) whereas HC II increased slightly but significantly (p <0.01) in the 12 patients with low initial HC II activity. The decrease of AT III induced by heparin administrated during dialysis is likely to account for this relative decrease of AT III activity. A modification of the distribution of both HC II and heparin between the vascular wall and the circulating blood is evoked to explain the relative increase in HC II activity and the need for higher heparin dosage in patients with low HC II levels.


2006 ◽  
Vol 290 (2) ◽  
pp. F262-F272 ◽  
Author(s):  
N. D. Vaziri

Chronic renal failure (CRF) results in profound lipid disorders, which stem largely from dysregulation of high-density lipoprotein (HDL) and triglyceride-rich lipoprotein metabolism. Specifically, maturation of HDL is impaired and its composition is altered in CRF. In addition, clearance of triglyceride-rich lipoproteins and their atherogenic remnants is impaired, their composition is altered, and their plasma concentrations are elevated in CRF. Impaired maturation of HDL in CRF is primarily due to downregulation of lecithin-cholesterol acyltransferase (LCAT) and, to a lesser extent, increased plasma cholesteryl ester transfer protein (CETP). Triglyceride enrichment of HDL in CRF is primarily due to hepatic lipase deficiency and elevated CETP activity. The CRF-induced hypertriglyceridemia, abnormal composition, and impaired clearance of triglyceride-rich lipoproteins and their remnants are primarily due to downregulation of lipoprotein lipase, hepatic lipase, and the very-low-density lipoprotein receptor, as well as, upregulation of hepatic acyl-CoA cholesterol acyltransferase (ACAT). In addition, impaired HDL metabolism contributes to the disturbances of triglyceride-rich lipoprotein metabolism. These abnormalities are compounded by downregulation of apolipoproteins apoA-I, apoA-II, and apoC-II in CRF. Together, these abnormalities may contribute to the risk of arteriosclerotic cardiovascular disease and may adversely affect progression of renal disease and energy metabolism in CRF.


Sign in / Sign up

Export Citation Format

Share Document