Effects of osmotic stresses on isolated rat hepatocytes. I. Ionic mechanisms of cell volume regulation

1990 ◽  
Vol 258 (2) ◽  
pp. G290-G298
Author(s):  
J. G. Corasanti ◽  
D. Gleeson ◽  
J. L. Boyer

Isolated hepatocyte suspensions were exposed to hypotonic and hypertonic stresses and serial cell volume measurements were made with an electronic particle size analyzer. With the exposure to hypotonic (160 mosM) buffer, hepatocytes swelled within 30-60 s as osomometers [relative volume (RV) = 1.44 +/- 0.08] and subsequently underwent regulatory volume decrease (RVD) back toward the resting (isotonic) level (1.16 +/- 0.05). This volume recovery was blocked by 65 mM extracellular K+ concentration and inhibited by barium (1 mM) and quinine (0.5 mM) but not by bumetanide (0.1 mM). Chloride depletion inhibited RVD by approximately 40% while 0.5 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) blocked the recovery by almost 90%. Calcium deprivation had no effect on RVD, nor did ouabain, amiloride, or sodium replacement. When exposed to buffer made hypertonic by addition of 200 mM sucrose, cells shrunk as osmometers (RV = 0.74 +/- 0.02) but did not exhibit regulatory volume increase (RVI). However, when cells that had first undergone RVD were reexposed to isotonic medium (relative hypertonic stress) RVI could be demonstrated from RV 0.77 +/- 0.17 to 0.91 +/- 0.20. This response was dependent on sodium, partially dependent on bicarbonate and chloride, and inhibited by the Na(+)-H+ exchange inhibitor amiloride (1 mM) but not by DIDS. Our findings suggest that RVD in rat hepatocytes is mediated by quinine- and barium-sensitive K+ conductance and DIDS-sensitive anion conductance, which is partly accounted for by Cl-; RVI is mediated by activation of Na(+)-H+ exchange coupled with a bicarbonate- and chloride-dependent but DIDS-insensitive process.

1990 ◽  
Vol 258 (2) ◽  
pp. G299-G307 ◽  
Author(s):  
D. Gleeson ◽  
J. G. Corasanti ◽  
J. L. Boyer

To assess the roles of acid-base transport systems in cell volume regulation in rat hepatocytes, intracellular pH (pHi) was measured in subconfluent monolayers loaded with 2'-7'-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF) after exposure to hypotonic and relative hypertonic media, interventions that stimulate regulatory volume decrease (RVD) and increase (RVI), respectively. During RVD, pHi decreased from 6.98 +/- 0.11 to 6.85 +/- 0.08 in the absence of HCO3- and from 7.26 +/- 0.10 to 7.19 +/- 0.06 in its presence. Omission of Na+ or addition of 1 mM amiloride prevented the decline in pHi. Acute withdrawal or replacement of Na+ in hypotonic medium resulted in a slower rate of fall or recovery in pHi, respectively, than when the same maneuvers were carried out in isotonic medium. In contrast, during RVI, pHi increased from 6.86 +/- 0.11 to 7.15 +/- 0.15 in the absence of HCO3-, a rise in pHi that was also completely abolished by Na+ removal or by 1 mM amiloride. In the presence of HCO3-, the rise in pHi was less marked than in its absence, although net acid efflux was greater because of a greater intracellular buffering capacity. Cl- removal in the presence of HCO3- had no effect on the change in pHi during either RVD or RVI. Perfusion with 0.5 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) during RVD lowered pHi further and accentuated the subsequent pHi rise seen after the return to isotonic medium. These data suggest that Na(+)-H+ exchange in rat hepatocytes is downregulated during RVD and activated during RVI. Cl(-)-HCO3- exchange does not appear to be involved in hepatocyte volume regulation.


1991 ◽  
Vol 261 (2) ◽  
pp. G340-G348 ◽  
Author(s):  
P. Haddad ◽  
J. S. Beck ◽  
J. L. Boyer ◽  
J. Graf

Hypotonic swelling of liver cells is followed by regulatory volume decrease (RVD), which has been shown to involve facilitated release of K+. In this study, the role of C1- in RVD was examined by videoplanimetric analysis of cell volume and measurement of membrane potential (Vm) and resistance (Rm) in single isolated rat hepatocytes, and by measurement of 36Cl efflux in the isolated perfused liver preloaded with the isotope. Liver cells subjected to hypotonic stress by removal of 50 mM external NaCl (70% of control osmolality) swelled from an initial volume of 6.68 +/- 0.77 to 8.27 +/- 0.88 pl (24.3 +/- 3.4% increase) within 1 min and exhibited RVD at an initial rate of 0.26 +/- 0.01 pl/min. A step decrease in external Cl- accelerated the initial rate of RVD to 0.53 +/- 0.08 pl/min. RVD was abolished in cells that had been depleted of Cl-. Vm and Rm displayed biphasic responses to hypotonic stress. An initial (less than 15 s) hyperpolarization of Vm from -35.4 +/- 2.2 to -38.8 +/- 2.6 mV was followed by a gradual depolarization reaching -30.2 +/- 2.0 mV by 1 min. In parallel, Rm initially (less than 15 s) increased from 101 +/- 13 to 121 +/- 17 M omega (19 +/- 3% increase) and then declined to 55 +/- 4 M omega (59 +/- 4% of initial Rm) within 1 min. These changes were reversible upon return to isotonicity.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 258 (5) ◽  
pp. R1217-R1223 ◽  
Author(s):  
K. G. Dickman ◽  
L. Goldstein

The role of K transport during cell volume regulation in response to extracellular osmolality, protein kinase C activation, and cellular Ca was examined in skate (Raja erinacea) red blood cells (RBC). Reduction of medium osmolality from 960 to 660 mosmol/kgH2O had no effect on K uptake or efflux despite a 25% increase in cell volume. Further reduction to 460 mosmol/kgH2O caused K uptake to double and K efflux to triple resulting in net K loss. Net K efflux in 460 mosmol/kgH2O medium was correlated with the presence of a regulatory volume decrease, which was sensitive to the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and insensitive to chloride replacement. K-K exchange was absent in both isotonic and hypotonic media. Treatment with the Ca ionophore A23187 in the presence of Ca had no effect on either cell volume or K efflux in isotonic medium, indicating the absence of Ca-activated K transport. In contrast, phorbol ester treatment caused cell volume, Na content, and proton and K efflux to increase. Consistent with activation of Na-H exchange, phorbol ester effects were inhibited by dimethylamiloride. This study constitutes the first demonstration of volume-sensitive K transport in RBC from the most primitive vertebrate studied to date.


2002 ◽  
Vol 283 (1) ◽  
pp. C315-C326 ◽  
Author(s):  
Claire H. Mitchell ◽  
Johannes C. Fleischhauer ◽  
W. Daniel Stamer ◽  
K. Peterson-Yantorno ◽  
Mortimer M. Civan

The volume of certain subpopulations of trabecular meshwork (TM) cells may modify outflow resistance of aqueous humor, thereby altering intraocular pressure. This study examines the contribution that Na+/H+, Cl−/HCO[Formula: see text]exchange, and K+-Cl− efflux mechanisms have on the volume of TM cells. Volume, Cl− currents, and intracellular Ca2+ activity of cultured human TM cells were studied with calcein fluorescence, whole cell patch clamping, and fura 2 fluorescence, respectively. At physiological bicarbonate concentration, the selective Na+/H+ antiport inhibitor dimethylamiloride reduced isotonic cell volume. Hypotonicity triggered a regulatory volume decrease (RVD), which could be inhibited by the Cl− channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB), the K+channel blockers Ba2+ and tetraethylammonium, and the K+-Cl− symport blocker [(dihydroindenyl)oxy]alkanoic acid. The fluid uptake mechanism in isotonic conditions was dependent on bicarbonate; at physiological levels, the Na+/H+ exchange inhibitor dimethylamiloride reduced cell volume, whereas at low levels the Na+-K+-2Cl− symport inhibitor bumetanide had the predominant effect. Patch-clamp measurements showed that hypotonicity activated an outwardly rectifying, NPPB-sensitive Cl− channel displaying the permeability ranking Cl− > methylsulfonate > aspartate. 2,3-Butanedione 2-monoxime antagonized actomyosin activity and both increased baseline [Ca2+] and abolished swelling-activated increase in [Ca2+], but it did not affect RVD. Results indicate that human TM cells display a Ca2+-independent RVD and that volume is regulated by swelling-activated K+ and Cl− channels, Na+/H+ antiports, and possibly K+-Cl− symports in addition to Na+-K+-2Cl− symports.


1995 ◽  
Vol 105 (4) ◽  
pp. 507-535 ◽  
Author(s):  
F Wehner ◽  
H Sauer ◽  
R K Kinne

We studied the ionic mechanisms underlying the regulatory volume increase of rat hepatocytes in primary culture by use of confocal laser scanning microscopy, conventional and ion-sensitive microelectrodes, cable analysis, microfluorometry, and measurements of 86Rb+ uptake. Increasing osmolarity from 300 to 400 mosm/liter by addition of sucrose decreased cell volumes to 88.6% within 1 min; thereafter, cell volumes increased to 94.1% of control within 10 min, equivalent to a regulatory volume increase (RVI) by 44.5%. This RVI was paralleled by a decrease in cell input resistance and in specific cell membrane resistance to 88 and 60%, respectively. Ion substitution experiments (high K+, low Na+, low Cl-) revealed that these membrane effects are due to an increase in hepatocyte Na+ conductance. During RVI, ouabain-sensitive 86Rb+ uptake was augmented to 141% of control, and cell Na+ and cell K+ increased to 148 and 180%, respectively. The RVI, the increases in Na+ conductance and cell Na+, as well as the activation of Na+/K(+)-ATPase were completely blocked by 10(-5) mol/liter amiloride. At this concentration, amiloride had no effect on osmotically induced cell alkalinization via Na+/H+ exchange. When osmolarity was increased from 220 to 300 mosm/liter (by readdition of sucrose after a preperiod of 15 min in which the cells underwent a regulatory volume decrease, RVD) cell volumes initially decreased to 81.5%; thereafter cell volumes increased to 90.8% of control. This post-RVD-RVI of 55.0% is also mediated by an increase in Na+ conductance. We conclude that rat hepatocytes in confluent primary culture are capable of RVI as well as of post-RVD-RVI. In this system, hypertonic stress leads to a considerable increase in cell membrane Na+ conductance. In concert with conductive Na+ influx, cell K+ is then increased via activation of Na+/K(+)-ATPase. An additional role of Na+/H+ exchange in the volume regulation of rat hepatocytes remains to be defined.


2018 ◽  
Vol 120 (3) ◽  
pp. 973-984 ◽  
Author(s):  
Vanina Netti ◽  
Alejandro Pizzoni ◽  
Martha Pérez-Domínguez ◽  
Paula Ford ◽  
Herminia Pasantes-Morales ◽  
...  

Neuronal activity in the retina generates osmotic gradients that lead to Müller cell swelling, followed by a regulatory volume decrease (RVD) response, partially due to the isoosmotic efflux of KCl and water. However, our previous studies in a human Müller cell line (MIO-M1) demonstrated that an important fraction of RVD may also involve the efflux of organic solutes. We also showed that RVD depends on the swelling-induced Ca2+ release from intracellular stores. Here we investigate the contribution of taurine (Tau) and glutamate (Glu), the most relevant amino acids in Müller cells, to RVD through the volume-regulated anion channel (VRAC), as well as their Ca2+ dependency in MIO-M1 cells. Swelling-induced [3H]Tau/[3H]Glu release was assessed by radiotracer assays and cell volume by fluorescence videomicroscopy. Results showed that cells exhibited an osmosensitive efflux of [3H]Tau and [3H]Glu (Tau > Glu) blunted by VRAC inhibitors 4-(2-butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)-oxybutyric acid and carbenoxolone reducing RVD. Only [3H]Tau efflux was mainly dependent on Ca2+ release from intracellular stores. RVD was unaffected in a Ca2+-free medium, probably due to Ca2+-independent Tau and Glu release, but was reduced by chelating intracellular Ca2+. The inhibition of phosphatidylinositol-3-kinase reduced [3H]Glu efflux but also the Ca2+-insensitive [3H]Tau fraction and decreased RVD, providing evidence of the relevance of this Ca2+-independent pathway. We propose that VRAC-mediated Tau and Glu release has a relevant role in RVD in Müller cells. The observed disparities in Ca2+ influence on amino acid release suggest the presence of VRAC isoforms that may differ in substrate selectivity and regulatory mechanisms, with important implications for retinal physiology. NEW & NOTEWORTHY The mechanisms for cell volume regulation in retinal Müller cells are still unknown. We show that swelling-induced taurine and glutamate release mediated by the volume-regulated anion channel (VRAC) largely contributes the to the regulatory volume decrease response in a human Müller cell line. Interestingly, the hypotonic-induced efflux of these amino acids exhibits disparities in Ca2+-dependent and -independent regulatory mechanisms, which strongly suggests that Müller cells may express different VRAC heteromers formed by the recently discovered leucine-rich repeat containing 8 (LRRC8) proteins.


1994 ◽  
Vol 194 (1) ◽  
pp. 47-68
Author(s):  
A L Silva ◽  
S H Wright

Long-term acclimation of Mytilus californianus to 60% artificial sea water (585 mosmol l-1; ASW) led to a 30-40% decrease in the taurine (53.5-36.9 mumol g-1 wet mass) and betaine (44.8-26.2 mumol g-1 wet mass) content of gill tissue, compared with that of control animals held in 100% ASW (980 mosmol l-1). The K+ content of gills did not change following long-term acclimation to reduced salinity. In contrast, losses of all three solutes during a brief (60 min) exposure to 60% ASW were less than or equal to 15%. Nevertheless, the swelling of gill cells that occurred after acute exposure to 60% ASW was followed by a return towards the control volume. Direct optical measurement of single gill filaments confirmed that, during an acute exposure to reduced salinity, ciliated lateral cells increased in cell height (volume) and then underwent a regulatory volume decrease (RVD) with a half-time of approximately 10 min. This short-term RVD was completely inhibited by exposure to 1 mmol l-1 quinidine, a K+ channel blocker, but only when the drug was applied to the basolateral aspect of the gill epithelium. Application of 1 mumol l-1 valinomycin relieved the inhibition by quinidine of the gill RVD. However, addition of valinomycin did not accelerate the rate of RVD observed in the absence of quinidine. These results indicate that long-term acclimation of Mytilus californianus gill in dilute sea water involves primarily losses of taurine and betaine, whereas short-term regulation of cell volume may involve an electrically conductive loss of intracellular K+ and a counter ion.


1990 ◽  
Vol 259 (6) ◽  
pp. F950-F960 ◽  
Author(s):  
N. A. McCarty ◽  
R. G. O'Neil

The mechanism underlying the activation of hypotonic cell volume regulation was studied in rabbit proximal straight tubule (PST). When isolated non-perfused tubules were exposed to hypotonic solution, cells swelled rapidly and then underwent a regulatory volume decrease (RVD). The extent of regulation after swelling was highly dependent on extracellular Ca concentration ([Ca2+]o), with a half-maximal inhibition (K1/2) for [Ca2+]o of approximately 100 microM. RVD was blocked by the Ca-channel blockers verapamil, lanthanum, and the dihydropyridines (DHP) nifedipine and nitrendipine, implicating voltage-activated Ca channels in the RVD response. Using the fura-2 fluorescence-ratio technique, we observed that cell swelling caused a sustained rise in intracellular Ca ([Ca2+]i) only when [Ca2+]o was normal (1 mM) but not when [Ca2+]o was low (1-10 microM). Furthermore, external Ca was required early on during swelling to induce RVD. If RVD was initially blocked by reducing [Ca2+]o or by addition of verapamil during hypotonic swelling, volume regulation could only be restored by subsequently inducing Ca entry within the first 1 min or less of exposure to hypotonic solution. These data indicate a "calcium window" of less than 1 min, during which RVD is sensitive to Ca, and that part of the Ca-dependent mechanism responsible for achieving RVD undergoes inactivation after swelling. It is concluded that RVD in rabbit PST is modulated by Ca via a DHP-sensitive mechanism in a time-dependent manner.


1991 ◽  
Vol 260 (1) ◽  
pp. C122-C131 ◽  
Author(s):  
K. Drewnowska ◽  
C. M. Baumgarten

Video microscopy was used to study the regulation of cell volume in isolated rabbit ventricular myocytes. Myocytes rapidly (less than or equal to 2 min) swelled and shrank in hyposmotic and hyperosmotic solutions, respectively, and this initial volume response was maintained without a regulatory volume decrease or increase for 20 min. Relative cell volumes (normalized to isosmotic solution, 1T) were as follows: 1.41 +/- 0.01 in 0.6T, 1.20 +/- 0.04 in 0.8T, 0.71 +/- 0.04 in 1.8T, and 0.57 +/- 0.03 in 2.6T. These volume changes were significantly less than expected if all of the measured volume was osmotically active water. Changes in width and thickness were significantly greater than changes in cell length. The idea that cotransport contributes to cell volume regulation was tested by inhibiting Na(+)-K(+)-2Cl- cotransport with bumetanide (BUM) and Na(+)-Cl- cotransport with chlorothiazide (CTZ). Under isotonic conditions, a 10-min exposure to BUM (1 microM), CTZ (100 microM), or BUM (10 microM) plus CTZ (100 microM) decreased relative cell volume to 0.87 +/- 0.01, 0.86 +/- 0.02, and 0.82 +/- 0.04, respectively. BUM plus CTZ also modified the response to osmotic stress. Swelling in 2.6T medium was 76% greater and shrinkage in 0.6T medium was 29% less than in the absence of diuretics. In contrast to the rapid effects of diuretics, inhibition of the Na(+)-K+ pump with 10 microM ouabain for 20 min did not affect cell volume in 1T solution. Nevertheless, ouabain decreased swelling in 0.6T medium by 52% and increased shrinkage in 1.8T medium by 34%. These data suggest that under isotonic conditions Na(+)-K(+)-2Cl- and Na(+)-Cl- cotransport are critical in establishing cell volume, but osmoregulation can compensate for Na(+)-K+ pump inhibition for at least 20 min. Under anisotonic conditions, the Na(+)-K+ pump and Na(+)-K(+)-2Cl- and/or Na(+)-Cl- cotransport are important in myocyte volume regulation.


Sign in / Sign up

Export Citation Format

Share Document