Capsaicin-sensitive afferent nerves activate submucosal secretomotor neurons in guinea pig ileum

1995 ◽  
Vol 269 (2) ◽  
pp. G203-G209 ◽  
Author(s):  
S. Vanner ◽  
W. K. MacNaughton

This study examined whether capsaicin-sensitive sensory nerves regulate intestinal ion transport using both Ussing chamber and intracellular recording techniques in in vitro submucosal preparations from the guinea pig ileum. In Ussing chamber studies, serosal application of capsaicin (20 nM-20 microM) evoked a biphasic dose-dependent increase in short-circuit current (Isc) (maximal effective concentration 200 nM and 2 microM, respectively). In chloride-free buffer, capsaicin responses were significantly reduced. Capsaicin evoked little or no response when extrinsic sensory nerve fibers had been surgically removed and tetrodotoxin and low-calcium and high-magnesium solutions blocked responses to capsaicin. In epithelial preparations devoid of submucosal neurons, capsaicin had virtually no effect, suggesting that responses evoked by capsaicin-sensitive nerves result from activation of submucosal secretomotor neurons. Intracellular recordings from single submucosal neurons demonstrated that superfusion with capsaicin (2 microM) depolarized neurons with an associated decreased conductance. Depolarizations were completely desensitized when capsaicin was reapplied, but synaptic inputs were unaffected. This study suggests that capsaicin-sensitive nerves can regulate ion transport in the gastrointestinal tract by release of neurotransmitter(s) that activate submucosal secretomotor neurons.

1997 ◽  
Vol 273 (5) ◽  
pp. G1127-G1134 ◽  
Author(s):  
W. MacNaughton ◽  
B. Moore ◽  
S. Vanner

This study characterized tachykinin-evoked secretomotor responses in in vitro submucosal and mucosal-submucosal preparations of the guinea pig ileum using combined intracellular and Ussing chamber recording techniques. Superfusion of endogenous tachykinins substance P (SP), neurokinin A (NKA), and neurokinin B depolarized single submucosal neurons and evoked increased short-circuit current ( I sc) responses in Ussing chamber preparations. The NK1-receptor agonist [Sar9,Met(O2)11]SP [50% effective concentration (EC50) = 2 nM] depolarized all submucosal neurons examined. The NK3-receptor agonist senktide (EC50 = 20 nM) depolarized ∼50% of neurons examined, whereas the NK2-receptor agonist [Ala5,β-Ala8]NKA-(4—10) had no effect on membrane potential. [Sar9,Met(O2)11]SP and senktide evoked similar increases in I sc that were tetrodotoxin sensitive (91 and 100%, respectively) and were selectively blocked by the NK1antagonist CP-99,994 and the NK3antagonist SR-142801, respectively. Capsaicin-evoked increases in I sc were significantly inhibited (54%, P < 0.05) by CP-99,994 but not by SR-142801. Neither antagonist inhibited slow excitatory postsynaptic potentials. These findings suggest that tachykinin-evoked secretion in guinea pig ileum is mediated by NK1 and NK3 receptors on submucosal secretomotor neurons and that capsaicin-sensitive nerves release tachykinin(s) that activate the NK1 receptors.


2004 ◽  
Vol 286 (5) ◽  
pp. G863-G871 ◽  
Author(s):  
Wallace K. MacNaughton ◽  
Marja D. Van Sickle ◽  
Catherine M. Keenan ◽  
Kelly Cushing ◽  
Ken Mackie ◽  
...  

We investigated the distribution and function of cannabinoid (CB)1receptors in the submucosal plexus of the guinea pig ileum. CB1receptors were found on both types of submucosal secretomotor neurons, colocalizing with VIP and neuropeptide Y (NPY), the noncholinergic and cholinergic secretomotor neurons, respectively. CB1receptors colocalized with transient receptor potential vanilloid-1 receptors on paravascular nerves and fibers in the submucosal plexus. In the submucosal ganglia, these nerves were preferentially localized at the periphery of the ganglia. In denervated ileal segments, CB1receptor immunoreactivity in submucosal neurons was not modified, but paravascular and intraganglionic fiber staining was absent. Short-circuit current ( Isc) was measured as an indicator of net electrogenic ion transport in Ussing chambers. In the ion-transport studies, Iscresponses to capsaicin, which activates extrinsic primary afferents, and to electrical field stimulation (EFS) were reduced by pretreatment with the muscarinic antagonist atropine, abolished by tetrodotoxin, but were unaffected by VIP receptor desensitization, hexamethonium, α-amino-3-hydroxy-5-methlisoxazole-4-proprionic acid, or N-methyl-d-aspartate glutamate receptor antagonists. The responses to capsaicin and EFS were reduced by 47 ± 12 and 30 ± 14%, respectively, by the CB1receptor agonist WIN 55,212–2. This inhibitory effect was blocked by the CB1receptor antagonist, SR 141716A. Iscresponses to forskolin or carbachol, which act directly on the epithelium, were not affected by WIN 55,212–2. The inhibitory effect of WIN 55,212–2 on EFS-evoked secretion was not observed in extrinsically denervated segments of ileum. Taken together, these data show cannabinoids act at CB1receptors on extrinsic primary afferent nerves, inhibiting the release of transmitters that act on cholinergic secretomotor pathways.


1983 ◽  
Vol 244 (4) ◽  
pp. G421-G425 ◽  
Author(s):  
H. J. Cooke ◽  
M. Montakhab ◽  
P. R. Wade ◽  
J. D. Wood

Transmural movement of 5-hydroxytryptamine (5-HT) was studied in guinea pig small intestine in vitro in order to test the hypothesis that there is mucosal 5-HT barrier in this species. Segments of guinea pig ileum were mounted as flat sheets in flux chambers or were everted and perfused. Mucosal-to-serosal (Jm leads to s) and serosal-to-mucosal (Js leads to m) fluxes of 5-HT were measured in the absence of 5-HT gradients and under open- or short-circuited conditions. The results indicated that substantial transmural movement of 5-HT occurred in these preparations. Both Jm leads to s and Js leads to m were linear functions of the 5-HT concentration over a range of 1-30 microM and were not significantly different in the two directions. Addition of 2,4-dinitrophenol to both sides of the tissue reduced short-circuit current to zero and increased both tissue conductance and unidirectional 5-HT fluxes. These results suggested that the 5-HT fluxes across the guinea pig ileum occurred by passive mechanisms. Fluxes of 5-HT across preparations with the muscularis externa removed were not significantly different from fluxes across intact preparations. Mucosal-to-serosal 5-HT fluxes in everted perfused sacs were comparable with fluxes in the flat-sheet preparations. The data are not consistent with the hypothesis of a "tissue barrier" that functions to prevent 5-HT from reaching serotonergic receptors on enteric ganglion cells or enteroendocrine cells.


1993 ◽  
Vol 265 (1) ◽  
pp. L38-L44
Author(s):  
T. L. Croxton

Electrophysiological characteristics of guinea pig tracheae were measured in vitro using an adaptation of cable analysis. This method allowed the repeated measurement of luminal diameter and epithelial electrical potential, resistance, and short-circuit current (Isc) during treatments known to affect smooth muscle contraction and epithelial ion transport. Stable values taken 3 h after mounting were as follows: diameter, 2.27 +/- 0.10 mm; potential, -28.3 +/- 2.3 mV; resistance, 327 +/- 30 omega.cm2; and Isc, 91.2 +/- 6.8 microA/cm2. These electrophysiological results are comparable to reported values for other species. However, the resistance and potential obtained in this study were larger than those previously reported for the guinea pig. Tracheal diameter was decreased 15% by methacholine and was increased 43% by subsequent isoproterenol treatment. Isoproterenol caused a small but significant increase in Isc when this quantity was normalized to tracheal length rather than to the apparent surface area. In contrast, apical amiloride decreased Isc by 51% and did not change diameter. These data validate this implementation of cable analysis, demonstrate that sodium absorption is the predominant mechanism of active ion transport by guinea pig tracheal epithelium, and indicate that this tissue has little capacity for stimulated chloride secretion.


2010 ◽  
Vol 298 (3) ◽  
pp. G384-G394 ◽  
Author(s):  
Jaime Pei Pei Foong ◽  
Laura J. Parry ◽  
Rachel M. Gwynne ◽  
Joel C. Bornstein

Vasoactive intestinal peptide (VIP) immunoreactive neurons are important secretomotor neurons in the submucous plexus. They are the only submucosal neurons to receive inhibitory inputs and exhibit both noradrenergic and nonadrenergic inhibitory synaptic potentials (IPSPs). The former are mediated by α2-adrenoceptors, but the receptors mediating the latter have not been identified. We used standard intracellular recording, RT-PCR, and confocal microscopy to test whether 5-HT1A, SST1, and/or SST2receptors mediate nonadrenergic IPSPs in VIP submucosal neurons in guinea pig ileum in vitro. The specific 5-HT1Areceptor antagonist WAY 100135 (1 μM) reduced the amplitude of IPSPs, an effect that persisted in the presence of the α2-adrenoceptor antagonist idazoxan (2 μM), suggesting that 5-HT might mediate a component of the IPSPs. Confocal microscopy revealed that there were many 5-HT-immunoreactive varicosities in close contact with VIP neurons. The specific SSTR2antagonist CYN 154806 (100 nM) and a specific SSTR1antagonist SRA 880 (3 μM) each reduced the amplitude of nonadrenergic IPSPs and hyperpolarizations evoked by somatostatin. In contrast with the other antagonists, CYN 154806 also reduced the durations of nonadrenergic IPSPs. Effects of WAY 100135 and CYN 154806 were additive. RT-PCR revealed gene transcripts for 5-HT1A, SST1, and SST2receptors in stripped submucous plexus preparations consistent with the pharmacological data. Although the involvement of other neurotransmitters or receptors cannot be excluded, we conclude that 5-HT1A, SST1, and SST2receptors mediate nonadrenergic IPSPs in the noncholinergic (VIP) secretomotor neurons. This study thus provides the tools to identify functions of enteric neural pathways that inhibit secretomotor reflexes.


2007 ◽  
Vol 292 (2) ◽  
pp. G608-G614 ◽  
Author(s):  
David E. Reed ◽  
Stephen Vanner

This study examined whether mucosal stimulation activates long secretomotor neural reflexes and, if so, how they are organized. The submucosa of in vitro full thickness guinea pig ileal preparations was exposed in the distal portion and intracellular recordings were obtained from electrophysiologically identified secretomotor neurons. Axons in the intact mucosa of the oral segment were stimulated by a large bipolar stimulating electrode. In control preparations, a single stimulus pulse evoked a fast excitatory postsynaptic potential (EPSP) in 86% of neurons located 0.7–1.0 cm anal to the stimulus site. A stimulus train evoked multiple fast EPSPs, but slow EPSPs were not observed. To examine whether mucosal stimulation specifically activated mucosal sensory nerve terminals, the mucosa/submucosa was severed from the underlying layers and repositioned. In these preparations, fast EPSPs could not be elicited in 89% of cells. Superfusion with phorbol dibutyrate enhanced excitability of sensory neurons and pressure-pulse application of serotonin to the mucosa increased the fast EPSPs evoked by mucosal stimulation, providing further evidence that sensory neurons were involved. To determine whether these reflexes projected through the myenteric plexus, this plexus was surgically lesioned between the stimulus site and the impaled neuron. No fast EPSPs were recorded in these preparations following mucosal stimulation whereas lesioning the submucosal plexus had no effect. These results demonstrate that mucosal stimulation triggers a long myenteric pathway that activates submucosal secretomotor neurons. This pathway projects in parallel with motor and vasodilator reflexes, and this common pathway may enable coordination of intestinal secretion, blood flow, and motility.


2014 ◽  
Vol 45 (4) ◽  
pp. 1108-1118 ◽  
Author(s):  
Sarah A. Maher ◽  
Mark A. Birrell ◽  
John J. Adcock ◽  
Michael A. Wortley ◽  
Eric D. Dubuis ◽  
...  

Prostaglandin D2 (PGD2) causes cough and levels are increased in asthma suggesting that it may contribute to symptoms. Although the prostaglandin D2 receptor 2 (DP2) is a target for numerous drug discovery programmes little is known about the actions of PGD2 on sensory nerves and cough.We used human and guinea pig bioassays, in vivo electrophysiology and a guinea pig conscious cough model to assess the effect of prostaglandin D2 receptor (DP1), DP2 and thromboxane receptor antagonism on PGD2 responses.PGD2 caused cough in a conscious guinea pig model and an increase in calcium in airway jugular ganglia. Using pharmacology and receptor-deficient mice we showed that the DP1 receptor mediates sensory nerve activation in mouse, guinea pig and human vagal afferents. In vivo, PGD2 and a DP1 receptor agonist, but not a DP2 receptor agonist, activated single airway C-fibres. Interestingly, activation of DP2 inhibited sensory nerve firing to capsaicin in vitro and in vivo.The DP1 receptor could be a therapeutic target for symptoms associated with asthma. Where endogenous PGD2 levels are elevated, loss of DP2 receptor-mediated inhibition of sensory nerves may lead to an increase in vagally associated symptoms and the potential for such adverse effects should be investigated in clinical studies with DP2 antagonists.


2010 ◽  
Vol 299 (1) ◽  
pp. R92-R100 ◽  
Author(s):  
Jens Berger ◽  
Martin Hardt ◽  
Wolfgang G. Clauss ◽  
Martin Fronius

A thin liquid layer covers the lungs of air-breathing vertebrates. Active ion transport processes via the pulmonary epithelial cells regulate the maintenance of this layer. This study focuses on basolateral Cl− uptake mechanisms in native lungs of Xenopus laevis and the involvement of the Na+/K+/2 Cl− cotransporter (NKCC) and HCO3−/Cl− anion exchanger (AE), in particular. Western blot analysis and immunofluorescence staining revealed the expression of the NKCC protein in the Xenopus lung. Ussing chamber experiments demonstrated that the NKCC inhibitors (bumetanide and furosemide) were ineffective at blocking the cotransporter under basal conditions, as well as under pharmacologically stimulated Cl−-secreting conditions (forskolin and chlorzoxazone application). However, functional evidence for the NKCC was detected by generating a transepithelial Cl− gradient. Further, we were interested in the involvement of the HCO3−/Cl− anion exchanger to transepithelial ion transport processes. Basolateral application of DIDS, an inhibitor of the AE, resulted in a significantly decreased the short-circuit current (ISC). The effect of DIDS was diminished by acetazolamide and reduced by increased external HCO3− concentrations. Cl− secretion induced by forskolin was decreased by DIDS, but this effect was abolished in the presence of HCO3−. These experiments indicate that the AE at least partially contributes to Cl− secretion. Taken together, our data show that in Xenopus lung epithelia, the AE, rather than the NKCC, is involved in basolateral Cl− uptake, which contrasts with the common model for Cl− secretion in pulmonary epithelia.


Toxins ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 351 ◽  
Author(s):  
C. Tse ◽  
Julie In ◽  
Jianyi Yin ◽  
Mark Donowitz ◽  
Michele Doucet ◽  
...  

One of the characteristic manifestations of Shiga-toxin-producing Escherichia coli (E. coli) infection in humans, including EHEC and Enteroaggregative E. coli O104:H4, is watery diarrhea. However, neither Shiga toxin nor numerous components of the type-3 secretion system have been found to independently elicit fluid secretion. We used the adult stem-cell-derived human colonoid monolayers (HCM) to test whether EHEC-secreted extracellular serine protease P (EspP), a member of the serine protease family broadly expressed by diarrheagenic E. coli can act as an enterotoxin. We applied the Ussing chamber/voltage clamp technique to determine whether EspP stimulates electrogenic ion transport indicated by a change in short-circuit current (Isc). EspP stimulates Isc in HCM. The EspP-stimulated Isc does not require protease activity, is not cystic fibrosis transmembrane conductance regulator (CFTR)-mediated, but is partially Ca2+-dependent. EspP neutralization with a specific antibody reduces its potency in stimulating Isc. Serine Protease A, secreted by Enteroaggregative E. coli, also stimulates Isc in HCM, but this current is CFTR-dependent. In conclusion, EspP stimulates colonic CFTR-independent active ion transport and may be involved in the pathophysiology of EHEC diarrhea. Serine protease toxins from E. coli pathogens appear to serve as enterotoxins, potentially significantly contributing to watery diarrhea.


Sign in / Sign up

Export Citation Format

Share Document