Electrophysiological properties of guinea pig tracheal epithelium determined by cable analysis

1993 ◽  
Vol 265 (1) ◽  
pp. L38-L44
Author(s):  
T. L. Croxton

Electrophysiological characteristics of guinea pig tracheae were measured in vitro using an adaptation of cable analysis. This method allowed the repeated measurement of luminal diameter and epithelial electrical potential, resistance, and short-circuit current (Isc) during treatments known to affect smooth muscle contraction and epithelial ion transport. Stable values taken 3 h after mounting were as follows: diameter, 2.27 +/- 0.10 mm; potential, -28.3 +/- 2.3 mV; resistance, 327 +/- 30 omega.cm2; and Isc, 91.2 +/- 6.8 microA/cm2. These electrophysiological results are comparable to reported values for other species. However, the resistance and potential obtained in this study were larger than those previously reported for the guinea pig. Tracheal diameter was decreased 15% by methacholine and was increased 43% by subsequent isoproterenol treatment. Isoproterenol caused a small but significant increase in Isc when this quantity was normalized to tracheal length rather than to the apparent surface area. In contrast, apical amiloride decreased Isc by 51% and did not change diameter. These data validate this implementation of cable analysis, demonstrate that sodium absorption is the predominant mechanism of active ion transport by guinea pig tracheal epithelium, and indicate that this tissue has little capacity for stimulated chloride secretion.

1978 ◽  
Vol 44 (6) ◽  
pp. 900-904 ◽  
Author(s):  
M. G. Marin ◽  
M. M. Zaremba

Active transport of Cl- toward the tracheal lumen and Na+ away from the lumen creates an electrical potential difference across dog tracheal epithelium. This study examined in vitro the effect of varying calcium concentration in the bathing media on the ion transport and electrical properties of dog tracheal epithelium. In six pairs of epithelia, changing calcium concentration from 1.9 to 0 mM resulted in a significant decrease in electrical resistance, from 318 +/- 36 to 214 +/- 24 omega.cm2. Short-circuit current and net Cl- and Na+ fluxes measured under short-circuit conditions were not changed significantly. Changing calcium concentration from 1.9 to 10 mM resulted in no significant change from control in the electrical properties nor in net Cl- and Na+ fluxes (short-circuit conditions). Histamine (10(-4) M) produced a significantly smaller increase in short-circuit current in 0 than in 1.9 mM Ca2+ (+5 +/- 2 vs. +12 +/- 2 microamperemeter/cm2). However, electrical changes were not significantly different in 1 or 10 mM Ca2+. These results indicate that calcium lack increased permeability of tracheal epithelium and that the increase in short-circuit current due to histamine depended in part on calcium.


1983 ◽  
Vol 54 (5) ◽  
pp. 1335-1339 ◽  
Author(s):  
F. D. McCool ◽  
J. P. Zorn ◽  
M. G. Marin

We studied the effect of ethanol on the electrical and ion transport properties of dog tracheal epithelium using Ussing's short-circuit technique. There was a significant reduction of short-circuit current and electrical potential difference and a tendency of electrical resistance to increase in response to increasing concentrations of ethanol in the bathing solutions. Threshold changes in the electrical properties were noted at an ethanol concentration of 3.3 microliter/ml (260 mg/100 ml). Ethanol did not produce these changes in electrical properties when Cl- and Na+ were substituted in the bathing media with either choline or SO2-(4). In five paired tissue preparations, ethanol (13.3 microliters/ml) significantly reduced the net flux of Cl- toward the lumen from 2.68 +/- 0.62 to 1.00 +/- 0.69 (SE) mu eq X cm-2 X h-1, due primarily to a reduced unidirectional flux of Cl- from submucosa to lumen. These observations demonstrate that ethanol has an effect on the ion transport and electrical properties of dog tracheal epithelium at concentrations that may be of clinical relevance.


1976 ◽  
Vol 231 (5) ◽  
pp. 1546-1549 ◽  
Author(s):  
MG Marin ◽  
B Davis ◽  
JA Nadel

Electrical potential difference is generated across canine tracheal epithelium by active transport of Cl- toward and Na+ away from the lumen. The present study examines the effects of acetylcholine on short-circuit current, potential difference, resistance, and fluxes of 36Cl and 24Na measured across pieces of canine tracheal epithelium mounted in Ussing-type chambers. Under short-circuit conditions, acetylcholine (5 X 10(-5) M) increased significantly net ion flux toward the lumen of Cl- (n equals 7) from +1.7 +/- SE 0.5 TO +3.3 +/- SE 0.5 mueq/cm2 - h, and of Na+ (n equals 7) from -0.8 +/- SE 0.2 to +0.5 +/- SE 0.2 mueq/cm2 - h. Under open-circuit conditions, acetylcholine (5 X 10(-5) M) increased significantly the unidirectional flux of Cl- (n equals 6) toward the lumen from 4.7 +/- SE 1.3 to 5.9 +/- SE 1.4 mueq/cm2 - h, while the other measured fluxes did not change significantly, suggesting that net Cl- flux had increased toward the lumen. Atropine sulfate (10(-8) M) prevented the response to acetylcholine (5 X 10(-5) M). The increased ion flux due to acetylcholine may mediate water secretion into the airway lumen, and this secretion may have important effects on the physical properties of the liquid through which the respiratory cilia beat.


1977 ◽  
Vol 42 (5) ◽  
pp. 735-738 ◽  
Author(s):  
M. G. Marin ◽  
B. Davis ◽  
J. A. Nadel

Previously we showed that the active transport of Cl-toward and Na+ away from the tracheal lumen creates an electrical potential difference (lumen negative) across the canine tracheal epithelium in vitro. The present study examined the effect of histamine on the electrical properties and ion transport of the canine tracheal epithelium in vitro. In six pairs of membranes, under short-circuit conditions, histamine (10(-4) M) significantly increased the net flux toward the lumen of Cl- from 1.7 +- 0.5 SE to 2.4 +- 0.6 microneq/cm2-h and Na+ from -0.4 +- 0.3 to 0.2 +- 0.3 microneq/cm2-h. The response to histamine was inhibited by diphenhydramine (10(-6) M), an H1-receptor antagonist, but not by burimamide (10(-4) M), an H2-receptor antagonist. These results are consistent with the hypothesis that an H1-type receptor mediates the increase of ion flux toward the lumen due to histamine. Increased ion flux toward the lumen may mediate water secretion into the airway lumen and have important effects on the physical properties of the liquid through which the respiratory cilia beat.


1986 ◽  
Vol 251 (3) ◽  
pp. C387-C394 ◽  
Author(s):  
S. C. Lazarus ◽  
L. J. McCabe ◽  
J. A. Nadel ◽  
W. M. Gold ◽  
G. D. Leikauf

We examined the interaction between mast cell-derived mediators and the electrical and ion transport properties of canine tracheal epithelium. We compared the effect of mediators released by immunologic challenge of sensitized lung parenchyma with that of mediators released from canine mastocytoma cells challenged with calcium ionophore A23187. Short-circuit current (Isc) increased by 19.2 +/- 3.0 microA/cm2 in response to mediators released from sensitized lung fragments challenged with ragweed antigen. This effect was not due to histamine. When the epithelial tissues were pretreated with indomethacin, the same mediator supernatant increased Isc by only 3.8 +/- 4.3 microA/cm2. The mediators released from 10(7) mastocytoma cells challenged with calcium ionophore increased Isc by 25.1 +/- 13.6 microA/cm2. In the presence of indomethacin, the Isc increased by 2.0 +/- 0.4 microA/cm2. Mastocytoma-derived mediators produced an increase in net chloride secretion without a significant effect on net sodium absorption. This study provides direct evidence that mast cell-derived mediators can stimulate epithelial ion transport in canine trachea and suggests that the effect is indirect and dependent on intact cyclooxygenase pathways in the tracheal epithelium.


1975 ◽  
Vol 67 (1) ◽  
pp. 119-125
Author(s):  
P. J. BENTLEY

SUMMARY The electrical potential difference and short-circuit current (scc, reflecting active transmural sodium transport) across the toad urinary bladder in vitro was unaffected by the presence of hypo-osmotic solutions bathing the mucosal (urinary) surface, providing that the transmural flow of water was small. Vasopressin increased the scc across the toad bladder (the natriferic response), but this stimulation was considerably reduced in the presence of a hypo-osmotic solution on the mucosal side, conditions under which water transfer across the membrane was also increased. This inhibition of the natriferic response did not depend on the direction of the water movement, for if the osmotic gradient was the opposite way to that which normally occurs, the response to vasopressin was still reduced. The natriferic response to cyclic AMP was also inhibited in the presence of an osmotic gradient. Aldosterone increased the scc and Na+ transport across the toad bladder but this response was not changed when an osmotic gradient was present. The physiological implications of these observations and the possible mechanisms involved are discussed.


1997 ◽  
Vol 273 (5) ◽  
pp. G1127-G1134 ◽  
Author(s):  
W. MacNaughton ◽  
B. Moore ◽  
S. Vanner

This study characterized tachykinin-evoked secretomotor responses in in vitro submucosal and mucosal-submucosal preparations of the guinea pig ileum using combined intracellular and Ussing chamber recording techniques. Superfusion of endogenous tachykinins substance P (SP), neurokinin A (NKA), and neurokinin B depolarized single submucosal neurons and evoked increased short-circuit current ( I sc) responses in Ussing chamber preparations. The NK1-receptor agonist [Sar9,Met(O2)11]SP [50% effective concentration (EC50) = 2 nM] depolarized all submucosal neurons examined. The NK3-receptor agonist senktide (EC50 = 20 nM) depolarized ∼50% of neurons examined, whereas the NK2-receptor agonist [Ala5,β-Ala8]NKA-(4—10) had no effect on membrane potential. [Sar9,Met(O2)11]SP and senktide evoked similar increases in I sc that were tetrodotoxin sensitive (91 and 100%, respectively) and were selectively blocked by the NK1antagonist CP-99,994 and the NK3antagonist SR-142801, respectively. Capsaicin-evoked increases in I sc were significantly inhibited (54%, P < 0.05) by CP-99,994 but not by SR-142801. Neither antagonist inhibited slow excitatory postsynaptic potentials. These findings suggest that tachykinin-evoked secretion in guinea pig ileum is mediated by NK1 and NK3 receptors on submucosal secretomotor neurons and that capsaicin-sensitive nerves release tachykinin(s) that activate the NK1 receptors.


1983 ◽  
Vol 244 (6) ◽  
pp. F639-F645 ◽  
Author(s):  
M. J. Welsh

Addition of barium ion, Ba2+, to the submucosal bathing solution of canine tracheal epithelium reversibly decreased the short-circuit current and increased transepithelial resistance. The decrease in short-circuit current represented a decrease in the net rate of Cl secretion with no change in the rate of Na absorption. Intracellular microelectrode techniques and an equivalent electrical circuit analysis were used to localize the effect of Ba2+ to an inhibition of the permeability of the basolateral membrane to K. Ba2+ (2 mM) doubled basolateral membrane resistance, decreased the equivalent electromotive force at the basolateral membrane, and decreased the magnitude of the depolarization of basolateral membrane voltage produced by increasing the submucosal K concentration. The inhibition of the basolateral K permeability depolarized the negative intracellular voltage, resulting in both a decrease in the driving force for Cl exit and an estimated increase in intracellular Cl concentration. These studies indicate that there is a Ba2+-inhibitable K conductance at the basolateral membrane of tracheal epithelial cells and that the K permeability plays an important role in the generation of the negative intracellular electrical potential that provides the driving force for Cl exit from the cell.


1991 ◽  
Vol 260 (5) ◽  
pp. G703-G710 ◽  
Author(s):  
B. R. Grubb

In the fowl cecum in vitro, the influence of glucose and the three most prevalent naturally occurring volatile fatty acids (acetate, propionate, butyrate) on short-circuit current (Isc), electrical resistance, and transport of Na and Cl was determined. When glucose, acetate, or butyrate was present, ion transport was characterized by electrogenic Na absorption, greater than 65% of which was amiloride inhibitable, and Cl secretion, which also was electrogenic. Isc could be completely accounted for by net fluxes of Na and Cl. When glucose, acetate, or butyrate (10 mM both sides) was included in the incubation medium, cecal tissue maintained its Isc and a constant rate of net Na absorption and Cl secretion for a 5-h period. When no substrate was present or propionate was included in the medium, a marked fall in Isc and net Na and Cl fluxes was seen. Glucose caused an increase in Isc when added only to the serosal side. As 3-O-methylglucose (not metabolized) was not effective in stimulating Isc of the cecum (serosal or mucosal addition), it appeared that glucose increased Isc by acting as an energy substrate for active Na transport. Acetate and butyrate appeared to be equally effective in stimulating Na transport and Isc when placed on either side of the membrane. When the preparation was supplied with glucose (serosal side) and acetate was added to the mucosal side, no further stimulation of Isc occurred. Thus it appeared that acetate and butyrate were acting as substrates for active Na transport rather than stimulating Na transport by some other mechanism such as a cotransport with Na.(ABSTRACT TRUNCATED AT 250 WORDS)


1981 ◽  
Vol 240 (3) ◽  
pp. C110-C115 ◽  
Author(s):  
C. A. Bisbee

Prolactin is a known osmoregulatory hormone in lower vertebrates, and recent evidence indicates that this hormone modulates ionic concentrations in milk. In an ultrastructurally and biochemically differentiated primary cell culture system in which mouse mammary epithelium is maintained on floating collagen gels, prolactin causes an increase in short-circuit current (Isc) of monolayers of cells derived from midpregnant (24.6 to 48.0 microA . cm-2) and lactating (10.4 to 16.1 microA . cm-2) glands. Transepithelial potential differences (basal side ground) average about -12 mV and are similar to those seen in vivo. Prelactating mammary epithelial cell cultures have transepithelial resistances ranging from 374 omega . cm2 (prolactin present) to 507 omega . cm2 (prolactin absent), and lactating cell cultures have resistances averaging almost 1,000 omega . cm2. Prolactin effects require at most one day of culture maintenance in prolactin-containing medium, and the effects are not due to known contamination of prolactin preparations with arginine vasopressin or growth hormone. Medium concentrations of prolactin as low as 1 ng/ml can elicit these effects. In prelactating cell cultures not treated with prolactin, the Isc is equal to the rate of sodium absorption. Prolactin increases sodium absorption fourfold but increases Isc only twofold. Clearly, prolactin induces other active transport; neither potassium nor chloride movements can account for this additional transport. Resistance values, current-voltage plots, and permeability coefficients indicate that in vitro mammary epithelium is a moderately “tight” tissue. Comparisons with intact glands indicate that in vitro mammary epithelium closely resembles its in vivo counterpart. Floating collagen gel cultures appear suitable for elucidating transport properties in cellularly heterogeneous and structurally complex mammalian tissues.


Sign in / Sign up

Export Citation Format

Share Document