scholarly journals Direct association of calponin with specific domains of PKC-α

2008 ◽  
Vol 295 (6) ◽  
pp. G1246-G1254 ◽  
Author(s):  
Sita Somara ◽  
Khalil N. Bitar

Calponin contributes to the regulation of smooth muscle contraction through its interaction with F-actin and inhibition of the actin-activated Mg-ATPase activity of phosphorylated myosin. Previous studies have shown that the contractile agonist acetylcholine induced a direct association of translocated calponin and PKC-α in the membrane. In the present study, we have determined the domain of PKC-α involved in direct association with calponin. In vitro binding assay was carried out by incubating glutathione S-transferase-calponin aa 92-229 with His-tagged proteins of individual domains and different combinations of domains of PKC-α. Calponin was found to bind directly to the full-length PKC-α. Calponin bound to C2 and C4 domains but not to C1 and C3 domains of PKC-α. When incubated with proteins of different combination of domains, calponin bound to C2-C3, C3-C4, and C2-C3-C4 but not to C1-C2 or C1-C2-C3. To determine whether these in vitro bindings mimic the in vivo associations, and in vivo binding assay was performed by transfecting colonic smooth muscle cells with His-tagged proteins of individual domains and different combinations of domains of PKC-α. Coimmunoprecipitation of calponin with His-tagged truncated forms of PKC-α showed that C1-C2, C1-C2-C3, C2-C3, and C3-C4 did not associate with calponin. Calponin associated only with full-length PKC-α and with C2-C3-C4 in cells in the resting state, and this association increased upon stimulation with acetylcholine. These data suggest that calponin bound to fragments that may mimic the active form of PKC-α and that the functional association of PKC-α with calponin requires both C2 and C4 domains during contraction of colonic smooth muscle cells.

2004 ◽  
Vol 286 (6) ◽  
pp. G954-G963 ◽  
Author(s):  
Suresh B. Patil ◽  
Mercy D. Pawar ◽  
Khalil N. Bitar

Calponin has been implicated in the regulation of smooth muscle contraction through its interaction with F-actin and inhibition of the actin-activated MgATPase activity of phosphorylated myosin. Calponin has also been shown to interact with PKC. We have studied the interaction of calponin with PKC-α and with the low molecular weight heat-shock protein (HSP)27 in contraction of colonic smooth muscle cells. Particulate fractions from isolated smooth muscle cells were immunoprecipitated with antibodies to calponin and Western blot analyzed with antibodies to HSP27 and to PKC-α. Acetylcholine induced a sustained increase in the immunocomplexing of calponin with HSP27 and of calponin with PKC-α in the particulate fraction, indicating an association of the translocated proteins in the membrane. To examine whether the observed interaction in vivo is due to a direct interaction of calponin with PKC-α, a cDNA of 1.3 kb of human calponin gene was PCR amplified. PCR product encoding 622 nt of calponin cDNA (nt 351–972 corresponding to amino acids 92–229) was expressed as fusion glutathione S-transferase (GST) protein in the vector pGEX -KT. We have studied the direct association of GST-calponin fusion protein with recombinant PKC-α in vitro. Western blot analysis of the fractions collected after elution with reduced glutathione buffer (pH 8.0) show a coelution of GST-calponin with PKC-α, indicating a direct association of GST-calponin with PKC-α. These data suggest that there is a direct association of translocated calponin and PKC-α in the membrane and a role for the complex calponin-PKC-α-HSP27, in contraction of colonic smooth muscle cells.


2010 ◽  
Vol 47 (3) ◽  
pp. 252-261 ◽  
Author(s):  
Riccardo Candido ◽  
Barbara Toffoli ◽  
Federica Corallini ◽  
Stella Bernardi ◽  
Davide Zella ◽  
...  

1994 ◽  
Vol 269 (11) ◽  
pp. 8504-8509
Author(s):  
K.A. Pritchard ◽  
M.K. O'Banion ◽  
J.M. Miano ◽  
N. Vlasic ◽  
U.G. Bhatia ◽  
...  

2005 ◽  
Vol 108 (6) ◽  
pp. 523-530 ◽  
Author(s):  
Giovanna CASTOLDI ◽  
Serena REDAELLI ◽  
Willy M. M. van de GREEF ◽  
Cira R. T. di GIOIA ◽  
Giuseppe BUSCA ◽  
...  

Ang II (angiotensin II) has multiple effects on vascular smooth muscle cells through the modulation of different classes of genes. Using the mRNA differential-display method to investigate gene expression in rat aortic smooth muscle cells in culture in response to 3 h of Ang II stimulation, we observed that Ang II down-regulated the expression of a member of the family of transmembrane receptors for Wnt proteins that was identified as Fzd2 [Fzd (frizzled)-2 receptor]. Fzds are a class of highly conserved genes playing a fundamental role in the developmental processes. In vitro, time course experiments demonstrated that Ang II induced a significant increase (P<0.05) in Fzd2 expression after 30 min, whereas it caused a significant decrease (P<0.05) in Fzd2 expression at 3 h. A similar rapid up-regulation after Ang II stimulation for 30 min was evident for TGFβ1 (transforming growth factor β1; P<0.05). To investigate whether Ang II also modulated Fzd2 expression in vivo, exogenous Ang II was administered to Sprague–Dawley rats (200 ng·kg−1 of body weight·min−1; subcutaneously) for 1 and 4 weeks. Control rats received normal saline. After treatment, systolic blood pressure was significantly higher (P<0.01), whereas plasma renin activity was suppressed (P<0.01) in Ang II- compared with the saline-treated rats. Ang II administration for 1 week did not modify Fzd2 expression in aorta of Ang II-treated rats, whereas Ang II administration for 4 weeks increased Fzd2 mRNA expression (P<0.05) in the tunica media of the aorta, resulting in a positive immunostaining for fibronectin at this time point. In conclusion, our data demonstrate that Ang II modulates Fzd2 expression in aortic smooth muscle cells both in vitro and in vivo.


2015 ◽  
Vol 37 (5) ◽  
pp. 1817-1829 ◽  
Author(s):  
Kai Huang ◽  
Zhi-Qiang Yan ◽  
Dan Zhao ◽  
Si-Guo Chen ◽  
Li-Zhi Gao ◽  
...  

Background/Aims: Physiological mechanical stretch in vivo helps to maintain the quiescent contractile differentiation of vascular smooth muscle cells (VSMCs), but the underlying mechanisms are still unclear. Here, we investigated the effects of SIRT1 in VSMC differentiation in response to mechanical cyclic stretch. Methods and Results: Rat VSMCs were subjected to 10%-1.25Hz-cyclic stretch in vitro using a FX-4000T system. The data indicated that the expression of contractile markers, including α-actin, calponin and SM22α, was significantly enhanced in VSMCs that were subjected to cyclic stretch compared to the static controls. The expression of SIRT1 and FOXO3a was increased by the stretch, but the expression of FOXO4 was decreased. Decreasing SIRT1 by siRNA transfection attenuated the stretch-induced expression of contractile VSMC markers and FOXO3a. Furthermore, increasing SIRT1 by either treatment with activator resveratrol or transfection with a plasmid to induce overexpression increased the expression of FOXO3a and contractile markers, and decreased the expression of FOXO4 in VSMCs. Similar trends were observed in VSMCs of SIRT1 (+/-) knockout mice. The overexpression of FOXO3a promoted the expression of contractile markers in VSMCs, while the overexpression of FOXO4 demonstrated the opposite effect. Conclusion: Our results indicated that physiological cyclic stretch promotes the contractile differentiation of VSMCs via the SIRT1/FOXO pathways and thus contributes to maintaining vascular homeostasis.


2007 ◽  
Vol 22 (2) ◽  
pp. 579-589 ◽  
Author(s):  
Daniel G. Sedding ◽  
Matthias Homann ◽  
Ulrike Seay ◽  
Harald Tillmanns ◽  
Klaus T. Preissner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document