scholarly journals Age-dependent cardiac function during experimental sepsis: effect of pharmacological activation of AMP-activated protein kinase by AICAR

2018 ◽  
Vol 315 (4) ◽  
pp. H826-H837 ◽  
Author(s):  
Yu Inata ◽  
Giovanna Piraino ◽  
Paul W. Hake ◽  
Michael O’Connor ◽  
Patrick Lahni ◽  
...  

Age represents a major risk factor for multiple organ failure, including cardiac dysfunction, in patients with sepsis. AMP-activated protein kinase (AMPK) is a crucial regulator of energy homeostasis that controls mitochondrial biogenesis by activation of peroxisome proliferator-activated receptor-γ coactivator-1α and disposal of defective organelles by autophagy. We investigated whether AMPK dysregulation contributes to age-dependent cardiac injury in young (2–3 mo) and mature adult (11–13 mo) male mice subjected to sepsis by cecal ligation and puncture and whether AMPK activation by 5-amino-4-imidazole carboxamide riboside affords cardioprotective effects. Plasma proinflammatory cytokines and myokine follistatin were similarly elevated in vehicle-treated young and mature adult mice at 18 h after sepsis. However, despite equivalent troponin I and T levels compared with similarly treated young mice, vehicle-treated mature adult mice exhibited more severe cardiac damage by light and electron microscopy analyses with more marked intercellular edema, inflammatory cell infiltration, and mitochondrial derangement. Echocardiography revealed that vehicle-treated young mice exhibited left ventricular dysfunction after sepsis, whereas mature adult mice exhibited a reduction in stroke volume without apparent changes in load-dependent indexes of cardiac function. At molecular analysis, phosphorylation of the catalytic subunits AMPK-α1/α2 was associated with nuclear translocation of peroxisome proliferator-activated receptor-γ coactivator-1α in vehicle-treated young but not mature adult mice. Treatment with 5-amino-4-imidazole carboxamide riboside ameliorated cardiac architecture derangement in mice of both ages. These cardioprotective effects were associated with attenuation of the systemic inflammatory response and amelioration of cardiac dysfunction in young mice only, not in mature adult animals. NEW & NOTEWORTHY Our data suggest that sepsis-induced cardiac dysfunction manifests with age-dependent characteristics, which are associated with a distinct regulation of AMP-activated protein kinase-dependent metabolic pathways. Consistent with this age-related deterioration, pharmacological activation of AMP-activated protein kinase may afford cardioprotective effects allowing a partial recovery of cardiac function in young but not mature age.

Redox Biology ◽  
2020 ◽  
Vol 28 ◽  
pp. 101345 ◽  
Author(s):  
Junling Gao ◽  
Juntao Yuan ◽  
Qiao'e Wang ◽  
Tong Lei ◽  
Xiyue Shen ◽  
...  

Shock ◽  
2019 ◽  
Vol 52 (5) ◽  
pp. 540-549 ◽  
Author(s):  
Laura Kitzmiller ◽  
John R. Ledford ◽  
Paul W. Hake ◽  
Michael O’Connor ◽  
Giovanna Piraino ◽  
...  

2004 ◽  
Vol 82 (6) ◽  
pp. 409-416 ◽  
Author(s):  
Hernando Leon ◽  
Laura L Atkinson ◽  
Jolanta Sawicka ◽  
Ken Strynadka ◽  
Gary D Lopaschuk ◽  
...  

Ischemia-reperfusion injury in the heart results in enhanced production of H2O2 and activation of AMP-activated protein kinase (AMPK). Since mutations in AMPK result in cardiovascular dysfunction, we investigated whether the activation of AMPK mediates the H2O2-induced reduction in cardiac mechanical function. Isolated working rat hearts were perfused at 37 °C with Krebs-Henseleit solution. Following a 20-minute equilibration period, a single bolus of H2O2 (300 µmol/L) was added and the hearts were perfused for an additional 5 min. H2O2 induced a dramatic and progressive reduction in cardiac function. This was accompanied by rapid and significant activation of AMPK, an increase in Thr-172 phosphorylation of AMPK, and an increase in the creatine to phosphocreatine (Cr/PCr) ratio. Addition of pyruvate (5 mmol/L) to the perfusate prevented the H2O2-mediated reduction in cardiac mechanical dysfunction, activation of myocardial AMPK activity, increase in AMPK phosphorylation and the increase in the Cr/PCr ratio. Hearts challenged with H2O2 (300 µmol/L) in presence of either AMPK inhibitor Compound C (10 µmol/L) or its vehicle (dimethyl sulfoxide (DMSO), 0.1%) showed reduced impairment in cardiac mechanical function. Compound C but not its vehicle significantly inhibited myocardial AMPK activity. Thus, H2O2 induces cardiac dysfunction via both AMPK-dependent and independent mechanisms.Key words: oxidative stress, AMPK, antioxidant, isolated rat heart, pyruvate.


2011 ◽  
Vol 38 (2) ◽  
pp. 94-101 ◽  
Author(s):  
Xiao-Fang Wang ◽  
Jin-Ying Zhang ◽  
Ling Li ◽  
Xiao-Yan Zhao ◽  
Hai-Long Tao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document