Left ventricular mechanical limitations to stroke volume in healthy humans during incremental exercise

2011 ◽  
Vol 301 (2) ◽  
pp. H478-H487 ◽  
Author(s):  
Eric J. Stöhr ◽  
José González-Alonso ◽  
Rob Shave

During incremental exercise, stroke volume (SV) plateaus at 40–50% of maximal exercise capacity. In healthy individuals, left ventricular (LV) twist and untwisting (“LV twist mechanics”) contribute to the generation of SV at rest, but whether the plateau in SV during incremental exercise is related to a blunting in LV twist mechanics remains unknown. To test this hypothesis, nine healthy young males performed continuous and discontinuous incremental supine cycling exercise up to 90% peak power in a randomized order. During both exercise protocols, end-diastolic volume (EDV), end-systolic volume (ESV), and SV reached a plateau at submaximal exercise intensities while heart rate increased continuously. Similar to LV volumes, two-dimensional speckle tracking-derived LV twist and untwisting velocity increased gradually from rest (all P < 0.001) and then leveled off at submaximal intensities. During continuous exercise, LV twist mechanics were linearly related to ESV, SV, heart rate, and cardiac output (all P < 0.01) while the relationship with EDV was exponential. In diastole, the increase in apical untwisting was significantly larger than that of basal untwisting ( P < 0.01), emphasizing the importance of dynamic apical function. In conclusion, during incremental exercise, the plateau in LV twist mechanics and their close relationship with SV and cardiac output indicate a mechanical limitation in maximizing LV output during high exercise intensities. However, LV twist mechanics do not appear to be the sole factor limiting LV output, since EDV reaches its maximum before the plateau in LV twist mechanics, suggesting additional limitations in diastolic filling to the heart.

1978 ◽  
Vol 234 (5) ◽  
pp. H525-H532
Author(s):  
A. Ilebekk ◽  
J. Lekven ◽  
F. Kiil

During right atrial pacing in open-chest anesthetized dogs, the relationships between reduction in stroke volume and rise in heart rate were identical in control experiments, during intravenous infusion of isoproterenol, and after blockade of adrenergic beta-receptors by propranolol. To examine the mechanism of this constant relationship, left ventricular volume was estimated by continuous recordings of myocardial chord length (MCL) between ultrasonic elements inserted into the anterior ventricular wall. Diastolic filling curves were curtailed by raising heart rate and end-diastolic MCL was reduced. At constant heart rate, end-diastolic MCL was not altered by isoproterenol infusion, except for a slight rise at heart rates exceeding 220 beats/min. End-systolic MCL, however, was reduced, accounting for larger stroke volume during isoproterenol than during propranolol infusion. The reduction in end-systolic MCL was constant at all heart rates examined. Hence, chronotropic changes influence end-diastolic volume and inotropic changes influence end-systolic volume; their effects on stroke volume regulation are, therefore, virtually independent.


1997 ◽  
Vol 83 (3) ◽  
pp. 712-717 ◽  
Author(s):  
Antonio C. L. Nóbrega ◽  
Jon W. Williamson ◽  
Jorge A. Garcia ◽  
Jere H. Mitchell

Nóbrega, Antonio C. L., Jon W. Williamson, Jorge A. Garcia, and Jere H. Mitchell. Mechanisms for increasing stroke volume during static exercise with fixed heart rate in humans. J. Appl. Physiol. 83(3): 712–717, 1997.—Ten patients with preserved inotropic function having a dual-chamber (right atrium and right ventricle) pacemaker placed for complete heart block were studied. They performed static one-legged knee extension at 20% of their maximal voluntary contraction for 5 min during three conditions: 1) atrioventricular sensing and pacing mode [normal increase in heart rate (HR; DDD)], 2) HR fixed at the resting value (DOO-Rest; 73 ± 3 beats/min), and 3) HR fixed at peak exercise rate (DOO-Ex; 107 ± 4 beats/min). During control exercise (DDD mode), mean arterial pressure (MAP) increased by 25 mmHg with no change in stroke volume (SV) or systemic vascular resistance. During DOO-Rest and DOO-Ex, MAP increased (+25 and +29 mmHg, respectively) because of a SV-dependent increase in cardiac output (+1.3 and +1.8 l/min, respectively). The increase in SV during DOO-Rest utilized a combination of increased contractility and the Frank-Starling mechanism (end-diastolic volume 118–136 ml). However, during DOO-Ex, a greater left ventricular contractility (end-systolic volume 55–38 ml) mediated the increase in SV.


1986 ◽  
Vol 251 (6) ◽  
pp. H1101-H1105 ◽  
Author(s):  
G. D. Plotnick ◽  
L. C. Becker ◽  
M. L. Fisher ◽  
G. Gerstenblith ◽  
D. G. Renlund ◽  
...  

To evaluate the extent to which the Frank-Starling mechanism is utilized during successive stages of vigorous upright exercise, absolute left ventricular end-diastolic volume and ejection fraction were determined by gated blood pool scintigraphy at rest and during multilevel maximal upright bicycle exercise in 30 normal males aged 26-50 yr, who were able to exercise to 125 W or greater. Left ventricular end-systolic volume, stroke volume, and cardiac output were calculated at rest and during each successive 3-min stage of exercise [25, 50, 75, 100, and 125–225 W (peak)]. During early exercise (25 W), end-diastolic and stroke volumes increased (+17 +/- 1 and +31 +/- 4%, respectively), with no change in end-systolic volume. With further exercise (50–75 W) end-diastolic volume remained unchanged as end-systolic volume decreased (-12 +/- 4 and -24 + 5%, respectively). At peak exercise end-diastolic volume decreased to resting level, stroke volume remained at a plateau, and end-systolic volume further decreased (-48 +/- 7%). Thus the Frank-Starling mechanism is used early in exercise, perhaps because of a delay in sympathetic mobilization, and does not appear to play a role in the later stages of vigorous exercise.


1986 ◽  
Vol 250 (1) ◽  
pp. H131-H136
Author(s):  
J. L. Heckman ◽  
L. Garvin ◽  
T. Brown ◽  
W. Stevenson-Smith ◽  
W. P. Santamore ◽  
...  

Biplane ventriculography was performed on nine intact anesthetized rats. Images of the left ventricle large enough for analysis were obtained by placing the rats close to the radiographic tubes (direct enlargement). Sampling rates, adequate for heart rates of 500 beats/min, were obtained by filming at 500 frames/s. From the digitized silhouettes of the left ventricle the following information was obtained (means +/- SE): end-diastolic volume 0.60 +/- 0.03 ml, end-systolic volume 0.22 +/- 0.02 ml, stroke volume 0.38 +/- 0.02 ml, ejection fraction 0.63 +/- 0.02, cardiac output 118 +/- 7 ml/min, diastolic septolateral dimension 0.41 +/- 0.01 mm, diastolic anteroposterior dimension 0.40 +/- 0.01 mm, diastolic base-to-apex dimension 1.58 +/- 0.04 mm. To determine the accuracy with which the volume of the ventricle could be measured, 11 methyl methacrylate casts of the left ventricle were made. The correlation was high (r = 0.99 +/- 0.02 ml E) between the cast volumes determined by water displacement and by use of two monoplane methods (Simpson's rule of integration and the area-length method applied to the analysis of the anteroposterior films) and a biplane method (area-length). These results demonstrate that it is possible to obtain accurate dimensions and volumes of the rat left ventricle by use of high-speed ventriculography.


1999 ◽  
Vol 84 (7) ◽  
pp. 2308-2313 ◽  
Author(s):  
George J. Kahaly ◽  
Stephan Wagner ◽  
Jana Nieswandt ◽  
Susanne Mohr-Kahaly ◽  
Thomas J. Ryan

Exertion symptoms occur frequently in subjects with hyperthyroidism. Using stress echocardiography, exercise capacity and global left ventricular function can be assessed noninvasively. To evaluate stress-induced changes in cardiovascular function, 42 patients with untreated thyrotoxicosis were examined using exercise echocardiography. Studies were performed during hyperthyroidism, after treatment with propranolol, and after restoration of euthyroidism. Twenty- two healthy subjects served as controls. Ergometry was performed with patients in a semisupine position using a continuous ramp protocol starting at 20 watts/min. In contrast to control and euthyroidism, the change in end-systolic volume index from rest to maximal exercise was lower in hyperthyroidism. At rest, the stroke volume index, ejection fraction, and cardiac index were significantly increased in hyperthyroidism, but exhibited a blunted response to exercise, which normalized after restoration of euthyroidism. Propranolol treatment also led to a significant increase of delta (Δ) stroke volume index. Maximal work load and Δ heart rate were markedly lower in hyper- vs. euthyroidism. Compared to the control value, systemic vascular resistance was lowered by 36% in hyperthyroidism at rest, but no further decline was noted at maximal exercise. The Δ stroke volume index, Δ ejection fraction, Δ heart rate, and maximal work load were significantly reduced in severe hyperthyroidism. Negative correlations between free T3 and diastolic blood pressure, maximal work load, Δ heart rate, and Δ ejection fraction were noted. Thus, in hyperthyroidism, stress echocardiography revealed impaired chronotropic, contractile, and vasodilatatory cardiovascular reserves, which were reversible when euthyroidism was restored.


Author(s):  
Candela Diaz-Canestro ◽  
Brandon Pentz ◽  
Arshia Sehgal ◽  
David Montero

Blood donation entails acute reductions of cardiorespiratory fitness in healthy men. Whether these effects can be extrapolated to blood donor populations comprising women remains uncertain. The purpose of this study was to comprehensively assess the acute impact of blood withdrawal on cardiac function, central hemodynamics and aerobic capacity in women throughout the mature adult lifespan. Transthoracic echocardiography and O2 uptake were assessed at rest and throughout incremental exercise (cycle ergometry) in healthy women (n = 30, age: 47–77 yr). Left ventricular end-diastolic volume (LVEDV), stroke volume (SV), cardiac output (Q̇) and peak O2 uptake (V̇O2peak), and blood volume (BV) were determined with established methods. Measurements were repeated following a 10% reduction of BV within a week period. Individuals were non-smokers, non-obese and moderately fit (V̇O2peak = 31.4 ± 7.3 mL·min–1·kg–1). Hematocrit and BV ranged from 38.0 to 44.8% and from 3.8 to 6.6 L, respectively. The standard 10% reduction in BV resulted in 0.5 ± 0.1 L withdrawal of blood, which did not alter hematocrit (P = 0.953). Blood withdrawal substantially reduced cardiac LVEDV and SV at rest as well as during incremental exercise (≥10% decrements, P ≤ 0.009). Peak Q̇ was proportionally decreased after blood withdrawal (P < 0.001). Blood withdrawal induced a 10% decrement in V̇O2peak (P < 0.001). In conclusion, blood withdrawal impairs cardiac filling, Q̇ and aerobic capacity in proportion to the magnitude of hypovolemia in healthy mature women. Novelty: The filling of the heart and therefore cardiac output are impaired by blood withdrawal in women. Oxygen delivery and aerobic capacity are reduced in proportion to blood withdrawal.


2011 ◽  
pp. 42-47
Author(s):  
James R. Munis

We've already looked at 2 types of pressure that affect physiology (atmospheric and hydrostatic pressure). Now let's consider the third: vascular pressures that result from mechanical events in the cardiovascular system. As you already know, cardiac output can be defined as the product of heart rate times stroke volume. Heart rate is self-explanatory. Stroke volume is determined by 3 factors—preload, afterload, and inotropy—and these determinants are in turn dependent on how the left ventricle handles pressure. In a pressure-volume loop, ‘afterload’ is represented by the pressure at the end of isovolumic contraction—just when the aortic valve opens (because the ventricular pressure is now higher than aortic root pressure). These loops not only are straightforward but are easier to construct just by thinking them through, rather than by memorization.


1963 ◽  
Vol 204 (3) ◽  
pp. 446-450 ◽  
Author(s):  
Franz J. Hallermann ◽  
G. C. Rastelli ◽  
H. J. C. Swan

In each of 12 mongrel dogs, data for end-diastolic volume, end-systolic volume, and stroke volume of the left ventricle were obtained by two independent methods: the indicator dilution method and a radiographic method. While the values for stroke volume showed good agreement between the two methods, a significant and directionally constant difference was found between values for end-diastolic volume and end-systolic volume calculated by the two different methods. This was observed in dogs with fast heart rates (exceeding 150 beats/min), as well as in dogs with heart rates of about 100 beats/min. The findings strongly suggest that a fundamental error is present in estimations of volume based on the washout of an indicator dye.


Sign in / Sign up

Export Citation Format

Share Document