scholarly journals Mesenteric lymph flow in adult and aged rats

2011 ◽  
Vol 301 (5) ◽  
pp. H1828-H1840 ◽  
Author(s):  
Tony J. Akl ◽  
Takashi Nagai ◽  
Gerard L. Coté ◽  
Anatoliy A. Gashev

The objective of study was to evaluate the aging-associated changes, contractile characteristics of mesenteric lymphatic vessels (MLV), and lymph flow in vivo in male 9- and 24-mo-old Fischer-344 rats. Lymphatic diameter, contraction amplitude, contraction frequency, and fractional pump flow, lymph flow velocity, wall shear stress, and minute active wall shear stress load were determined in MLV in vivo before and after Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) application at 100 μM. The active pumping of the aged rat MLV in vivo was found to be severely depleted, predominantly through the aging-associated decrease in lymphatic contractile frequency. Such changes correlate with enlargement of aged MLV, which experienced much lower minute active shear stress load than adult vessels. At the same time, pumping in aged MLV in vivo may be rapidly increased back to levels of adult vessels predominantly through the increase in contraction frequency induced by nitric oxide (NO) elimination. Findings support the idea that in aged tissues surrounding the aged MLV, the additional source of some yet unlinked lymphatic contraction-stimulatory metabolites is counterbalanced or blocked by NO release. The comparative analysis of the control data obtained from experiments with both adult and aged MLV in vivo and from isolated vessel-based studies clearly demonstrated that ex vivo isolated lymphatic vessels exhibit identical contractile characteristics to lymphatic vessels in vivo.

2015 ◽  
Vol 309 (9) ◽  
pp. R1122-R1134 ◽  
Author(s):  
Jeffrey A. Kornuta ◽  
Zhanna Nepiyushchikh ◽  
Olga Y. Gasheva ◽  
Anish Mukherjee ◽  
David C. Zawieja ◽  
...  

Given the known mechanosensitivity of the lymphatic vasculature, we sought to investigate the effects of dynamic wall shear stress (WSS) on collecting lymphatic vessels while controlling for transmural pressure. Using a previously developed ex vivo lymphatic perfusion system (ELPS) capable of independently controlling both transaxial pressure gradient and average transmural pressure on an isolated lymphatic vessel, we imposed a multitude of flow conditions on rat thoracic ducts, while controlling for transmural pressure and measuring diameter changes. By gradually increasing the imposed flow through a vessel, we determined the WSS at which the vessel first shows sign of contraction inhibition, defining this point as the shear stress sensitivity of the vessel. The shear stress threshold that triggered a contractile response was significantly greater at a transmural pressure of 5 cmH2O (0.97 dyne/cm2) than at 3 cmH2O (0.64 dyne/cm2). While contraction frequency was reduced when a steady WSS was applied, this inhibition was reversed when the applied WSS oscillated, even though the mean wall shear stresses between the conditions were not significantly different. When the applied oscillatory WSS was large enough, flow itself synchronized the lymphatic contractions to the exact frequency of the applied waveform. Both transmural pressure and the rate of change of WSS have significant impacts on the contractile response of lymphatic vessels to flow. Specifically, time-varying shear stress can alter the inhibition of phasic contraction frequency and even coordinate contractions, providing evidence that dynamic shear could play an important role in the contractile function of collecting lymphatic vessels.


2010 ◽  
Vol 30 (11) ◽  
pp. 2099-2102 ◽  
Author(s):  
Nick J. Willett ◽  
Robert C. Long ◽  
Kathryn Maiellaro-Rafferty ◽  
Roy L. Sutliff ◽  
Richard Shafer ◽  
...  

Stroke ◽  
1997 ◽  
Vol 28 (5) ◽  
pp. 993-998 ◽  
Author(s):  
Agostino Gnasso ◽  
Concetta Irace ◽  
Claudio Carallo ◽  
Maria Serena De Franceschi ◽  
Corradino Motti ◽  
...  

Blood ◽  
1993 ◽  
Vol 82 (4) ◽  
pp. 1165-1174 ◽  
Author(s):  
SM Buttrum ◽  
R Hatton ◽  
GB Nash

Abstract Interaction between neutrophils and platelets at the site of vascular damage or in ischaemic tissue may promote thrombosis and/or vascular occlusion. To study this interaction, we have developed a novel technique that allows visualization of adhesion of flowing neutrophils to immobilized, activated platelets. The total number of adherent neutrophils decreased with increasing wall shear stress in the range 0.05 to 0.4 Pa. Although a proportion of the adherent neutrophils were stationary, most were rolling with a velocity greater than 0.4 micron/s. The percentage of rolling cells increased with increasing wall shear stress, but the mean rolling cell velocity was nearly independent of shear stress. Adhesion of neutrophils was nearly abolished by treatment of the platelets with antibody to P-selectin, or by treatment of neutrophils with either neuraminidase, dextran sulfate, or EDTA. Studies with a series of antibodies to L-selectin (TQ-1, Dreg- 56, LAM1–3, and LAM1–10) suggested that this molecule was one neutrophil ligand for rolling adhesion. Thus, sialylated carbohydrate on neutrophils appears essential for P-selectin-mediated adhesion, and a proportion of this ligand may be presented by L-selectin. Treatment of the neutrophils with N-formyl-methionyl-leucyl-phenylalanine decreased the number of rolling cells, and increased the rolling velocity, possibly due to shedding of neutrophil ligand(s) and/or cell shape change. In vivo, immobilized platelets could play an important role in promoting attachment of neutrophils to vessel walls, eg, by slowing neutrophils so that integrin-mediated immobilization could occur.


2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Matthew D. Ford ◽  
Ugo Piomelli

Cerebral aneurysms are a common cause of death and disability. Of all the cardiovascular diseases, aneurysms are perhaps the most strongly linked with the local fluid mechanic environment. Aside from early in vivo clinical work that hinted at the possibility of high-frequency intra-aneurysmal velocity oscillations, flow in cerebral aneurysms is most often assumed to be laminar. This work investigates, through the use of numerical simulations, the potential for disturbed flow to exist in the terminal aneurysm of the basilar bifurcation. The nature of the disturbed flow is explored using a series of four idealized basilar tip models, and the results supported by four patient specific terminal basilar tip aneurysms. All four idealized models demonstrated instability in the inflow jet through high frequency fluctuations in the velocity and the pressure at approximately 120 Hz. The instability arises through a breakdown of the inflow jet, which begins to oscillate upon entering the aneurysm. The wall shear stress undergoes similar high-frequency oscillations in both magnitude and direction. The neck and dome regions of the aneurysm present 180 deg changes in the direction of the wall shear stress, due to the formation of small recirculation zones near the shear layer of the jet (at the frequency of the inflow jet oscillation) and the oscillation of the impingement zone on the dome of the aneurysm, respectively. Similar results were observed in the patient-specific models, which showed high frequency fluctuations at approximately 112 Hz in two of the four models and oscillations in the magnitude and direction of the wall shear stress. These results demonstrate that there is potential for disturbed laminar unsteady flow in the terminal aneurysm of the basilar bifurcation. The instabilities appear similar to the first instability mode of a free round jet.


Author(s):  
Risa Robinson ◽  
Lynn Fuller ◽  
Harvey Palmer ◽  
Mary Frame

Blood flow regulation in the microvascular network has been investigated by means of computational fluid dynamics, in vivo particle tracking and microchannel models. It is evident from these studies that shear stress along the wall is a key factor in the communication network that results in blood flow modification, yet current methods for shear stress determination are acknowledged to be imprecise. Micromachining technology allows for the development of implantable shear stress sensors that will enable us to monitor wall shear stress at multiple locations in arteriole bifurcations. In this study, a microchannel was employed as an in vitro model of a microvessel. Thermal shear stress sensors were used to mimic the endothelial cells that line the vessel wall. A three dimensional computational model was created to simulate the system’s thermal response to the constant temperature control circuit and related wall shear stress. The model geometry included a silicon wafer section with all the fabrication layers — silicon dioxide, poly silicon resistor, silicon nitride — and a microchannel with cross section 17 μm × 17 μm. This computational technique was used to optimize the dimensions of the system for a 0.01 Reynolds number flow at room temperature in order to reduce the amount of heat lost to the substrate and to predict and maximize the signal response. Results of the design optimization are presented and the fabrication process discussed.


Sign in / Sign up

Export Citation Format

Share Document