scholarly journals Extracellular histones induce calcium signals in the endothelium of resistance-sized mesenteric arteries and cause loss of endothelium-dependent dilation

2019 ◽  
Vol 316 (6) ◽  
pp. H1309-H1322 ◽  
Author(s):  
Daniel M. Collier ◽  
Nuria Villalba ◽  
Adrian Sackheim ◽  
Adrian D. Bonev ◽  
Zachary D. Miller ◽  
...  

Histone proteins are elevated in the circulation after traumatic injury owing to cellular lysis and release from neutrophils. Elevated circulating histones in trauma contribute to coagulopathy and mortality through a mechanism suspected to involve endothelial cell (EC) dysfunction. However, the functional consequences of histone exposure on intact blood vessels are unknown. Here, we sought to understand the effects of clinically relevant concentrations of histones on the endothelium in intact, resistance-sized, mesenteric arteries (MAs). EC Ca2+ was measured with high spatial and temporal resolution in MAs from mice selectively expressing the EC-specific, genetically encoded ratiometric Ca2+ indicator, Cx40-GCaMP-GR, and vessel diameter was measured by edge detection. Application of purified histone protein directly to the endothelium of en face mouse and human MA preparations produced large Ca2+ signals that spread within and between ECs. Surprisingly, luminal application of histones had no effect on the diameter of pressurized arteries. Instead, after prolonged exposure (30 min), it reduced dilations to endothelium-dependent vasodilators and ultimately caused death of ~25% of ECs, as evidenced by markedly elevated cytosolic Ca2+ levels (793 ± 75 nM) and uptake of propidium iodide. Removal of extracellular Ca2+ but not depletion of intracellular Ca2+ stores prevented histone-induced Ca2+ signals. Histone-induced signals were not suppressed by transient receptor potential vanilloid 4 (TRPV4) channel inhibition (100 nM GSK2193874) or genetic ablation of TRPV4 channels or Toll-like receptor receptors. These data demonstrate that histones are robust activators of noncanonical EC Ca2+ signaling, which cause vascular dysfunction through loss of endothelium-dependent dilation in resistance-sized MAs. NEW & NOTEWORTHY We describe the first use of the endothelial cell (EC)-specific, ratiometric, genetically encoded Ca2+ indicator, Cx40-GCaMP-GR, to study the effect of histone proteins on EC Ca2+ signaling. We found that histones induce an influx of Ca2+ in ECs that does not cause vasodilation but instead causes Ca2+ overload, EC death, and vascular dysfunction in the form of lost endothelium-dependent dilation.

Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Rhéure Alves-Lopes ◽  
Augusto C Montezano ◽  
Karla B Neves ◽  
Aikaterini Anagnostopoulou ◽  
Silvia Lacchini ◽  
...  

The transient receptor potential melastatin 2 cation channel (TRPM2) is redox-sensitive and promotes Ca 2+ influx after H 2 O 2 activation through oxidative modification and PARP-ADPR-dependent mechanisms. TRPM2 also regulates Na + influx, and by increasing [Na + ]i interferes with the Na + -Ca 2+ exchanger (NCX) inducing reverse mode action, promoting Ca 2+ influx. These processes may be driven by Nox4-derived H 2 O 2. We tested the hypothesis that vascular dysfunction in hypertension involves oxidative stress-induced TRPM2 activation through H 2 O 2 production, which in turn promotes Ca 2+ influx. Mesenteric arteries isolated from wildtype (WT), LinA3 (mice expressing human renin with Ang II-dependent hypertension), Nox4 -/- and LinA3/Nox4 -/- mice and vascular smooth muscle cells (VSMCs) from hypertensive and normotensive patients were used. Arteries from hypertensive LinA3 mice, exhibit increased U46619-induced vasoconstriction versus WT mice (Emax - LinA3 vs WT: 9.37 ± 0.51 vs 6.79 ± 0.29), an effect attenuated by olaparib (PARP-ADPR inhibitor) and 2-APB (TRPM2 blocker) and also increased mRNA expression (Fold change - related to control) of NOX4 (3.05 ± 0.30), TRPM2 (1.38 ± 0.24), NCX (1.973 ± 0.34) and salt inducible kinase 1 (1.833 ± 0.12) and sodium-potassium pump (1.43 ± 0.16), which are activated when intracellular levels of Na + rise beyond a critical point. These events seem to be regulated by NOX4, since they were not observed in mesenteric arteries from LinA3/Nox4 -/- mice. Ang II-induced Ca 2+ influx is potentiated in VSMCs from hypertensive patients (AUC-Ex490/Em535: normotensive: 15400±917.5 vs hypertensive - 22460±2388), a response followed by increased generation of O 2 - and H 2 O 2 in cells from hypertensive patients. These ROS effects were attenuated by catalase, and 2-APB, 8-br and olaparib (TRPM2 inhibitors) and benzamil, KB-R7943 and YM244769 (NCX inhibitors). Our data indicate that TRPM2 ion channel activation contributes to redox-sensitive vascular dysfunction in hypertension. These findings suggest that dysregulation of TRPM2-NOX4-derived ROS and NCX may contribute to redox- and Ca 2+ signalling important in vascular function in hypertension. TRPM2 may be a point of cross-talk between ROS and Ca 2+ signalling.


Cosmetics ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 47
Author(s):  
Hwa Sun Ryu ◽  
Jeong-Yeon Choi ◽  
Kyeong-Sun Lee ◽  
Jung-No Lee ◽  
Chun Mong Lee ◽  
...  

Heat shock treatment-induced skin aging causes a thickened epidermis, increased matrix metalloproteinase (MMP)-1 expression, collagen degradation, and deep wrinkles. In this study, we investigated the effect of manassantin B in preventing heat shock treatment-induced aging. We first separated manassantin B (MB) from the roots of Saururus chinensis, and the structure was identified using 1H- and 13C-NMR spectroscopy. RT-PCR and western blotting were applied to investigate the anti-aging effect of manassantin B. Manassantin B decreased MMP-1 expression through transient receptor potential vanilloid (TRPV) 1 channel inhibition and significantly increased procollagen expression. In addition, manassantin B suppressed MAPK phosphorylation in a dose-dependent manner. Our results suggest that manassantin B, the active ingredient in S. chinensis, can be effectively used to inhibit heat shock treatment-induced skin aging.


2019 ◽  
pp. 219-231 ◽  
Author(s):  
A. Boudaka ◽  
M. Al-Suleimani ◽  
I. Al-Lawati ◽  
H. Baomar ◽  
S. Al-Siyabi

The endothelium contributes to the maintenance of vasodilator tone by releasing endothelium-derived relaxing factors, including nitric oxide (NO). In hypertension, endothelial nitric oxide synthase (eNOS) produces less NO and could be one of the contributing factors to the increased peripheral vascular resistance. Agonist-induced Ca(2+) entry is essential for the activation of eNOS. The transient receptor potential vanilloid type 4 (TRPV4) channel, a Ca(2+)-permeant cation channel, is expressed in the endothelial cells and involved in the regulation of vascular tone. The present study aimed to investigate the role of TRPV4 channel in endothelium-dependent NO-mediated relaxation of the resistance artery in hypertensive rats. Using a wire myograph, relaxation response to the TRPV4 activator, 4alpha-phorbol-12,13-didecanoate (4alphaPDD) was assessed in mesenteric arteries obtained from Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHRs). Compared to WKY, SHR demonstrated a significantly attenuated 4alphaPDD-induced endothelium-dependent NO-mediated relaxation. Immunohistochemical analysis revealed positive staining for TRPV4 in the endothelium of mesenteric artery sections in both WKY and SHR. Furthermore, TRPV4 mRNA and protein expressions in SHR were significantly lower than their expression levels in WKY rats. We conclude that 4alphaPDD-induced endothelium-dependent NO-mediated vasorelaxation is reduced in SHR and downregulation of TRPV4 could be one of the contributing mechanisms.


2011 ◽  
Vol 301 (3) ◽  
pp. H757-H765 ◽  
Author(s):  
Ravi K. Adapala ◽  
Phani K. Talasila ◽  
Ian N. Bratz ◽  
David X. Zhang ◽  
Makoto Suzuki ◽  
...  

Transient receptor potential vanilloid channel 4 (TRPV4) is a polymodally activated nonselective cationic channel implicated in the regulation of vasodilation and hypertension. We and others have recently shown that cyclic stretch and shear stress activate TRPV4-mediated calcium influx in endothelial cells (EC). In addition to the mechanical forces, acetylcholine (ACh) was shown to activate TRPV4-mediated calcium influx in endothelial cells, which is important for nitric oxide-dependent vasodilation. However, the molecular mechanism through which ACh activates TRPV4 is not known. Here, we show that ACh-induced calcium influx and endothelial nitric oxide synthase (eNOS) phosphorylation but not calcium release from intracellular stores is inhibited by a specific TRPV4 antagonist, AB-159908. Importantly, activation of store-operated calcium influx was not altered in the TRPV4 null EC, suggesting that TRPV4-dependent calcium influx is mediated through a receptor-operated pathway. Furthermore, we found that ACh treatment activated protein kinase C (PKC) α, and inhibition of PKCα activity by the specific inhibitor Go-6976, or expression of a kinase-dead mutant of PKCα but not PKCε or downregulation of PKCα expression by chronic 12- O-tetradecanoylphorbol-13-acetate treatment, completely abolished ACh-induced calcium influx. Finally, we found that ACh-induced vasodilation was inhibited by the PKCα inhibitor Go-6976 in small mesenteric arteries from wild-type mice, but not in TRPV4 null mice. Taken together, these findings demonstrate, for the first time, that a specific isoform of PKC, PKCα, mediates agonist-induced receptor-mediated TRPV4 activation in endothelial cells.


2014 ◽  
Vol 4 (2) ◽  
pp. 20130069 ◽  
Author(s):  
C. J. Chan ◽  
G. Whyte ◽  
L. Boyde ◽  
G. Salbreux ◽  
J. Guck

A cell is a complex material whose mechanical properties are essential for its normal functions. Heating can have a dramatic effect on these mechanical properties, similar to its impact on the dynamics of artificial polymer networks. We investigated such mechanical changes by the use of a microfluidic optical stretcher, which allowed us to probe cell mechanics when the cells were subjected to different heating conditions at different time scales. We find that HL60/S4 myeloid precursor cells become mechanically more compliant and fluid-like when subjected to either a sudden laser-induced temperature increase or prolonged exposure to higher ambient temperature. Above a critical temperature of 52 ± 1°C, we observed active cell contraction, which was strongly correlated with calcium influx through temperature-sensitive transient receptor potential vanilloid 2 (TRPV2) ion channels, followed by a subsequent expansion in cell volume. The change from passive to active cellular response can be effectively described by a mechanical model incorporating both active stress and viscoelastic components. Our work highlights the role of TRPV2 in regulating the thermomechanical response of cells. It also offers insights into how cortical tension and osmotic pressure govern cell mechanics and regulate cell-shape changes in response to heat and mechanical stress.


2009 ◽  
Vol 12 (1) ◽  
pp. 116 ◽  
Author(s):  
Muhammad Azhar Sherkheli ◽  
Heike Benecke ◽  
Julia Franca Doerner ◽  
Olaf Kletke ◽  
A. K. Vogt-Eisele ◽  
...  

Transient receptor potential vanilloid-3 (TRPV3) is a thermo-sensitive ion channel expressed in skin keratinocytes and in a variety of neural cells. It is activated by warmth as well as monoterpenoids including camphor, menthol, dihydrocarveol and 1,8-cineol. TRPV3 is described as a putative nociceptor and previous studies revealed sensitization of the channel during repeated short-term stimulation with different agonists. In the present investigation TRPV3 was transiently expressed in either Xenopus oocytes or HEK293 cells. Whole-cell voltage-clamp techniques were used to characterize the behavior of TRPV3 when challenged with different agonists. Similarly, a human keratinocyte-derived cell line (HaCaT cells) was used to monitor the behavior of native TRPV3 when challenged with different agonists. We report here that prolonged exposure (5-15 minutes) of monoterpenoids results in agonist-specific desensitization of TRPV3. Long-term exposure to camphor and 1,8-cineol elicits desensitizing currents in TRPV3 expressing oocytes, whereas the non-terpenoid agonist 2-APB induces sustained currents. Agonist-specific desensitization of endogenous TRPV3 was also found in HaCaT cells, which may be taken as a representative for the native system. Terpenoids have a long history of use in therapeutics, pharmaceuticals and cosmetics but knowledge about underpinning molecular mechanisms is incomplete. Our finding on agonist-induced desensitization of TRPV3 by some monoterpenoids displays a novel mechanism through which TRP channels could be functionally modulated. Therefore, we conclude that desensitization of TRPV3 channels might be the molecular basis of action for some of the medicinal properties of camphor and 1,8-cineol.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 339
Author(s):  
Carmelo Puglia ◽  
Debora Santonocito ◽  
Angela Bonaccorso ◽  
Teresa Musumeci ◽  
Barbara Ruozi ◽  
...  

Background: Capsaicin (CPS) is a highly selective agonist of the transient receptor potential vanilloid type 1 (TRPV1) with a nanomolar affinity. High doses or prolonged exposure to CPS induces TRPV1 defunctionalization and, although this effect is currently used for the treatment of thermal hyperalgesia in chronic pain conditions, it is responsible of detrimental effects, such as denervation of sensory fibers. The aim of the present study was to formulate CPS loaded lipid nanocarriers (CPS-LN) in order to optimize CPS release, thus preventing TRPV1 internalization and degradation. Methods: CPS-LNs were formulated and characterized by in vitro studies. The activation of TRPV1 receptors after CPS-LN administration was evaluated by measuring spontaneous pain that was induced by local injection into the plantar surface of the mouse hind-paw. Moreover, the expression of TRPV1 in the skin was evaluated by western blot analysis in CPS-LN injected mice and then compared to a standard CPS solution (CPS-STD). Results: CPS inclusion in LN induced a lower pain response when compared to CPS-STD; further, it prevented TRPV1 down-regulation in the skin, while CPS-STD induced a significant reduction of TRPV1 expression. Conclusions: Drug encapsulation in lipid nanoparticles produced an optimization of CPS release, thus reducing mice pain behavior and avoiding the effects that are caused by TRPV1 defunctionalization related to a prolonged activation of this receptor.


Sign in / Sign up

Export Citation Format

Share Document