Are cardiovascular and sympathoadrenal effects of human “new pressor protein” preparations attributable to human coagulation β-FXIIa?

2004 ◽  
Vol 286 (3) ◽  
pp. H837-H846 ◽  
Author(s):  
Peter C. Papageorgiou ◽  
Ali Pourdjabbar ◽  
Akis A. Amfilochiadis ◽  
Eleftherios P. Diamandis ◽  
Frans Boomsma ◽  
...  

“New pressor protein” (NPP) derived from normal human plasma is an extra renal enzyme that shares strong sequence homology with human coagulation β-FXIIa. Under our bioassay conditions, human NPP (10–20 μl plasma equivalent/∼300 g rat iv) can raise the systolic blood pressure (SBP) by 40–50 mmHg, the diastolic blood pressure (DBP) by 15–20 mmHg, and the heart rate (HR) by 70–90 beats/min. Plasma epinephrine (of adrenal medullary origin) and norepinephrine rise by about 50- and 10-fold, respectively. Because β-FXIIa is not normally associated with pressor properties, we endeavored to substantiate that the hypertensive effects of impure NPP preparations used in our experiments are attributable to their content of β-FXIIa. We carried out comparisons with highly purified (>90%) commercial human β-FXIIa and found that by gel filtration (Sephadex G-100 and G-75), NPP bioactivity appeared in the ∼30-kDa elution zone, consistent with the molecular mass of β-FXIIa. Retention time using fast-protein liquid chromatography anion exchange chromatography was identical. Molecular mass and comigration were confirmed by SDS-PAGE gel electrophoresis, and the recovered ∼30-kDa protein bands yielded β-FXIIa fragments identified by mass spectrometry. Matched doses of the NPP preparations produced dose-response curves very similar to those elicited by β-FXIIa with respect to increments of SBP, DBP, and HR, whereas plasma catecholamine increments were generally comparable. We propose that β-FXIIa is substantially, if not exclusively, responsible for the observed effects of our NPP preparations and that this points to a novel axis connecting the FXII coagulation cascade and the sympathoadrenal gland to other cardiovascular regulatory mechanisms.

1998 ◽  
Vol 333 (3) ◽  
pp. 839-845 ◽  
Author(s):  
Vivienne FOLEY ◽  
David SHEEHAN

Two similar glutathione S-transferases (GSTs), which do not bind to glutathione– or S-hexylglutathione–agarose affinity resins, have been purified from the yeast Yarrowia lipolytica. An approx. 400-fold purification was obtained by a combination of DEAE-Sephadex, phenyl-Sepharose, hydroxyapatite and Mono-Q anion-exchange chromatography. The native molecular mass of both proteins was estimated as approx. 110 kDa by both Superose-12 gel-filtration chromatography and non-denaturing electrophoresis. SDS/PAGE indicated a subunit mass of 50 kDa. Reverse-phase HPLC of purified proteins gave a single, well-resolved, peak, suggesting that the proteins are homodimers. Identical behaviour on HPLC, native electrophoresis and SDS/PAGE, N-terminal sequencing, sensitivity to a panel of inhibitors and identical specific activities with 1-chloro-2,4-dinitrobenzene as substrate suggest that the two isoenzymes are very similar. The enzymes do not immunoblot with antisera to any of the main GST classes, and N-terminal sequencing suggests no clear relationship with previously characterized enzymes, such as that of the fungus, Phanerochaete chrysosporium [Dowd, Buckley and Sheehan (1997) Biochem. J. 324, 243–248]. It is possible that the two isoenzymes arise as a result of post-translational modification of a single GST isoenzyme.


1994 ◽  
Vol 40 (1) ◽  
pp. 18-23 ◽  
Author(s):  
Andreas Prokop ◽  
Peter Rapp ◽  
Fritz Wagner

Production of extracellular β-1, 3-glucanase activity by a monokaryotic Schizophyllum commune strain was monitored and results indicated that the β-glucanase activity consisted of an endo- β-1, 3-glucanase activity, besides a negligible amount of β-1, 6-glucanase and β-glucosidase activity. Unlike the β-1, 3-glucanase production of the dikaryotic parent strain S. commune ATCC 38548, the β-1, 3-glucanase formation of the monokaryon was not regulated by catabolite repression. The endo- β-1, 3-glucanase of the monokaryon was purified from the culture filtrate by lyophilization, anion exchange chromatography on Mono Q, and gel filtration on Sephacryl S-100. It appeared homogeneous on SDS-PAGE with a molecular mass of 35.5 kDa and the isoelectric point was 3.95. The enzyme was only active toward glucans containing β-1, 3-linkages, including lichenan, a β-1, 3-1, 4-D-glucan. It attacked laminarin in an endo-like fashion to form laminaribiose, laminaritriose, and high oligosaccharides. While the extracellular β-glucanases from the dikaryotic S. commune ATCC 38548 degraded significant amounts of schizophyllan, the endo- β-1, 3-glucanase from the monokaryon showed greatly reduced activity toward this high molecular mass β-1, 3-/β-1, 6-glucan. The Km of the endoglucanase, using laminarin as substrate, was 0.28 mg/mL. Optimal pH and temperature were 5.5 and 50 °C, respectively. The enzyme was stable between pH 5.5 and 7.0 and at temperatures below 50 °C. The enzyme was completely inhibited by 1 mM Hg2+. Growth of the monokaryotic S. commune strain was not affected by its constitutive endo- β-1, 3-glucanase formation.Key words: endo- β-1, 3-glucanase, Schizophyllum commune, monokaryon, constitutive endo- β-1, 3-glucanase formation.


1998 ◽  
Vol 64 (10) ◽  
pp. 3607-3614 ◽  
Author(s):  
Christine Riou ◽  
Jean-Michel Salmon ◽  
Marie-Jose Vallier ◽  
Ziya Günata ◽  
Pierre Barre

ABSTRACT Aspergillus oryzae was found to secrete two distinct β-glucosidases when it was grown in liquid culture on various substrates. The major form had a molecular mass of 130 kDa and was highly inhibited by glucose. The minor form, which was induced most effectively on quercetin (3,3′,4′,5,7-pentahydroxyflavone)-rich medium, represented no more than 18% of total β-glucosidase activity but exhibited a high tolerance to glucose inhibition. This highly glucose-tolerant β-glucosidase (designated HGT-BG) was purified to homogeneity by ammonium sulfate precipitation, gel filtration, and anion-exchange chromatography. HGT-BG is a monomeric protein with an apparent molecular mass of 43 kDa and a pI of 4.2 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing polyacrylamide gel electrophoresis, respectively. Using p-nitrophenyl-β-d-glucoside as the substrate, we found that the enzyme was optimally active at 50°C and pH 5.0 and had a specific activity of 1,066 μmol min−1mg of protein−1 and a Km of 0.55 mM under these conditions. The enzyme is particularly resistant to inhibition by glucose (Ki , 1.36 M) or glucono-δ-lactone (Ki , 12.5 mM), another powerful β-glucosidase inhibitor present in wine. A comparison of the enzyme activities on various glycosidic substrates indicated that HGT-BG is a broad-specificity type of fungal β-glucosidase. It exhibits exoglucanase activity and hydrolyzes (1→3)- and (1→6)-β-glucosidic linkages most effectively. This enzyme was able to release flavor compounds, such as geraniol, nerol, and linalol, from the corresponding monoterpenyl-β-d-glucosides in a grape must (pH 2.9, 90 g of glucose liter−1). Other flavor precursors (benzyl- and 2-phenylethyl-β-d-glucosides) and prunin (4′,5,7-trihydroxyflavanone-7-glucoside), which contribute to the bitterness of citrus juices, are also substrates of the enzyme. Thus, this novel β-glucosidase is of great potential interest in wine and fruit juice processing because it releases aromatic compounds from flavorless glucosidic precursors.


1980 ◽  
Vol 187 (3) ◽  
pp. 647-653 ◽  
Author(s):  
K Arakawa ◽  
M Yuki ◽  
M Ikeda

Tryptensin, a vasopressor substance generated from human plasma protein fraction IV-4 by trypsin, has been isolated and the amino acid composition analysed. The procedures used for the isolation were: (a) adsorption of the formed tryptensin on Dowex 50W (X2; NH4+ form); (b) gel filtration through Sephadex G-25; (c) cation-exchange chromatography on CM-cellulose; (d) anion-exchange chromatography on DEAE-cellulose; (e) re-chromatography on CM-cellulose; (f) gel filtration on Bio-Gel P-2; (g) partition chromatography on high-pressure liquid chromatography. The homogeneity of the isolated tryptensin was confirmed by thin-layer chromatography and thin-layer electrophoresis. The amino acid analysis of the hydrolysate suggested the following proportional composition: Asp, 1; Val, 1; Ile, 1; Tyr, 1; Phe, 1; His, 1; Arg, 1; Pro, 1. This composition is identical with that of human angiotensin.


1995 ◽  
Vol 41 (9) ◽  
pp. 1273-1282 ◽  
Author(s):  
Z Chen ◽  
A Prestigiacomo ◽  
T A Stamey

Abstract We describe for the first time a protocol to purify to apparent homogeneity an in vitro-prepared complex of prostate-specific antigen (PSA) and alpha 1-antichymotrypsin (ACT) by using a combination of gel filtration and ion-exchange chromatography. The purity of the PSA-ACT complex was confirmed by gel electrophoresis and Western blot. The PSA-ACT complex was stable in the pH range 6.0 to 7.8; it was also stable in various matrices, temperatures, and high concentrations of salt. Purification of the PSA-ACT complex was highly reproducible. An absorptivity of 0.99 L x g-1 x cm-1 at 280 nm was assigned to the PSA-ACT complex, based on amino acid analysis. Because PSA and ACT bind in a 1:1 molar ratio, we determined the molecular mass of the PSA-ACT complex as the mass encoded by the cDNA of ACT (plus 26% carbohydrate) plus the molecular mass of PSA (28,430 Da), which totals 89,280 Da. Using this material, we made two common calibrators, one of 100% PSA-ACT complex and one of 90% PSA-ACT complex plus 10% free PSA by volume (90:10 calibrator). Substitution of these calibrators for the manufacturers' calibrators in nine commercial immunoassays substantially reduced differences between immunoassays, especially for serum PSA values between 4 and 10 micrograms/L. The 90:10 calibrator is recommended as a universal calibrator for international standardization of PSA immunoassays.


1966 ◽  
Vol 44 (8) ◽  
pp. 1069-1087 ◽  
Author(s):  
J. C. Nixon ◽  
B. Zinman

Toxohormone was extracted from bacteria-free human tumors and normal tissues, and assayed for activity by measuring the decrease in serum iron levels of rats 12 hours after injection of the extracts. In contrast with the findings of others, the results of the present study demonstrated that active toxohormone could be isolated from bacteria-free tumor tissues. Bacteria-free normal human kidney and spleen also yielded active toxohormone extracts, whereas extracts of normal human- and rat-skeletal muscle and rat liver had no activity.Four active toxohormone extracts were purified by ion-exchange chromatography followed by gel filtration. Human leukemic spleen, metastatic carcinoma of the cecum, and normal human spleen and kidney yielded several highly active purified fractions.


2001 ◽  
Vol 47 (8) ◽  
pp. 767-772 ◽  
Author(s):  
A KM Shofiqur Rahman ◽  
Shinya Kawamura ◽  
Masahiro Hatsu ◽  
M M Hoq ◽  
Kazuhiro Takamizawa

The zygomycete fungus Rhizomucor pusillus HHT-1, cultured on L(+)arabinose as a sole carbon source, produced extracellular α-L-arabinofuranosidase. The enzyme was purified by (NH4)2SO4fractionation, gel filtration, and ion exchange chromatography. The molecular mass of this monomeric enzyme was 88 kDa. The native enzyme had a pI of 4.2 and displayed a pH optimum and stability of 4.0 and 7.0–10.0, respectively. The temperature optimum was 65°C, and it was stable up to 70°C. The Kmand Vmaxfor p-nitrophenyl α-L-arabinofuranoside were 0.59 mM and 387 µmol·min–1·mg–1protein, respectively. Activity was not stimulated by metal cofactors. The N-terminal amino acid sequence did not show any similarity to other arabinofuranosidases. Higher hydrolytic activity was recorded with p-nitrophenyl α-L-arabinofuranoside, arabinotriose, and sugar beet arabinan; lower hydrolytic activity was recorded with oat–spelt xylan and arabinogalactan, indicating specificity for the low molecular mass L(+)-arabinose containing oligosaccharides with furanoside configuration.Key words: α-L-arabinofuranosidase, enzyme purification, amino acid sequence, Rhizomucor pusillus.


1991 ◽  
Vol 280 (2) ◽  
pp. 533-539 ◽  
Author(s):  
G Reiser ◽  
R Schäfer ◽  
F Donié ◽  
E Hülser ◽  
M Nehls-Sahabandu ◽  
...  

A photolabile arylazido analogue of Ins(1,3,4,5)P4 selectively substituted at the 1-phosphate group was synthesized by coupling 2-aminoethanol(1)-1-phospho-D-myo-inositol 4,5-bisphosphate with N-hydroxysuccinimidyl-4-azidosalicylic acid [Schäfer, Nehls-Sahabandu, Grabowsky, Dehlinger-Kremer, Schulz & Mayr (1990) Biochem. J. 272, 817-825] and subsequently phosphorylating the product by bovine brain Ins(1,4,5)P3 3-kinase. The product, N-(4-azidosalicyl)-aminoethanol(1)-1-phospho-D-myo-inositol 3,4,5-trisphosphate [AsaIns(1,3,4,5)P4] was radioiodinated and purified by anion-exchange chromatography. AsaIns(1,3,4,5)P4 bound to a high-affinity Ins(1,3,4,5)P4 receptor from pig cerebellum with an affinity only 3-fold lower than that of Ins(1,3,4,5)P4. Photoirradiation of 125I-AsaIns(1,3,4,5)P4 in the presence of the receptor preparation revealed that the radioactive label was specifically associated with a protein band of apparent molecular mass 42 kDa, which Donié & Reiser [(1991) Biochem. J. 275, 453-457] had previously tentatively assigned to the Ins(1,3,4,5)P4 receptor protein. The radioactive label was displaced from the receptor when the binding reaction with 125I-AsaIns(1,3,4,5)P4 was carried out in the presence of 5 microM-Ins(1,3,4,5)P4.


Sign in / Sign up

Export Citation Format

Share Document