Conduit arterial wave reflection promotes pressure transmission but impedes hydraulic energy transmission to the microvasculature

2020 ◽  
Vol 319 (1) ◽  
pp. H66-H75 ◽  
Author(s):  
Avinash Kondiboyina ◽  
Joseph J. Smolich ◽  
Michael M. H. Cheung ◽  
Berend E. Westerhof ◽  
Jonathan P. Mynard

With aging, a reduction in the stiffness gradient between elastic and muscular arteries is thought to reduce wave reflection in conduit arteries, leading to increased pulsatile pressure transmission into the microvasculature. This assumes that wave reflection limits pressure transmission in arteries. However, using a computational model, we showed that wave reflection promotes pulsatile pressure transmission, although it does limit hydraulic energy transmission. Increased microvascular pulse pressure with aging is instead related to decreasing arterial compliance.

2021 ◽  
Vol 12 ◽  
Author(s):  
Catherine Fortier ◽  
Charles-Antoine Garneau ◽  
Mathilde Paré ◽  
Hasan Obeid ◽  
Nadège Côté ◽  
...  

Background: Physiologically, the aorta is less stiff than peripheral conductive arteries, creating an arterial stiffness gradient, protecting microcirculation from high pulsatile pressure. However, the pharmacological manipulation of arterial stiffness gradient has not been thoroughly investigated. We hypothesized that acute administration of nitroglycerin (NTG) may alter the arterial stiffness gradient through a more significant effect on the regional stiffness of medium-sized muscular arteries, as measured by pulse wave velocity (PWV). The aim of this study was to examine the differential impact of NTG on regional stiffness, and arterial stiffness gradient as measured by the aortic-brachial PWV ratio (AB-PWV ratio) and aortic-femoral PWV ratio (AF-PWV ratio).Methods: In 93 subjects (age: 61 years, men: 67%, chronic kidney disease [CKD]: 41%), aortic, brachial, and femoral stiffnesses were determined by cf-PWV, carotid-radial (cr-PWV), and femoral-dorsalis pedis artery (fp-PWV) PWVs, respectively. The measurements were repeated 5 min after the sublingual administration of NTG (0.4 mg). The AB-PWV and AF-PWV ratios were obtained by dividing cf-PWV by cr-PWV or fp-PWV, respectively. The central pulse wave profile was determined by radial artery tonometry through the generalized transfer function.Results: At baseline, cf-PWV, cr-PWV, and fp-PWV were 12.12 ± 3.36, 9.51 ± 1.81, and 9.71 ± 1.89 m/s, respectively. After the administration of NTG, there was a significant reduction in cr-PWV of 0.86 ± 1.27 m/s (p < 0.001) and fp-PWV of 1.12 ± 1.74 m/s (p < 0.001), without any significant changes in cf-PWV (p = 0.928), leading to a significant increase in the AB-PWV ratio (1.30 ± 0.39 vs. 1.42 ± 0.46; p = 0.001) and AF-PWV ratio (1.38 ± 0.47 vs. 1.56 ± 0.53; p = 0.001). There was a significant correlation between changes in the AF-PWV ratio and changes in the timing of wave reflection (r = 0.289; p = 0.042) and the amplitude of the heart rate-adjusted augmented pressure (r = − 0.467; p < 0.001).Conclusion: This study shows that acute administration of NTG reduces PWV of muscular arteries (brachial and femoral) without modifying aortic PWV. This results in an unfavorable profile of AB-PWV and AF-PWV ratios, which could lead to higher pulse pressure transmission into the microcirculation.


2013 ◽  
Vol 305 (2) ◽  
pp. H259-H264 ◽  
Author(s):  
Robert V. MacKenzie Ross ◽  
Mark R. Toshner ◽  
Elaine Soon ◽  
Robert Naeije ◽  
Joanna Pepke-Zaba

This study analyzed the relationship between pulmonary vascular resistance (PVR) and pulmonary arterial compliance ( Ca) in patients with idiopathic pulmonary arterial hypertension (IPAH) and proximal chronic thromboembolic pulmonary hypertension (CTEPH). It has recently been shown that the time constant of the pulmonary circulation (RC time constant), or PVR × Ca, remains unaltered in various forms and severities of pulmonary hypertension, with the exception of left heart failure. We reasoned that increased wave reflection in proximal CTEPH would be another cause of the decreased RC time constant. We conducted a retrospective analysis of invasive pulmonary hemodynamic measurements in IPAH ( n = 78), proximal CTEPH ( n = 91) before (pre) and after (post) pulmonary endarterectomy (PEA), and distal CTEPH ( n = 53). Proximal CTEPH was defined by a postoperative mean pulmonary artery pressure (PAP) of ≤25 mmHg. Outcome measures were the RC time constant, PVR, Ca, and relationship between systolic and mean PAPs. The RC time constant for pre-PEA CTEPH was 0.49 ± 0.11 s compared with post-PEA-CTEPH (0.37 ± 0.11 s, P < 0.0001), IPAH (0.63 ± 0.14 s, P < 0.001), and distal CTEPH (0.55 ± 0.12 s, P < 0.05). A shorter RC time constant was associated with a disproportionate decrease in systolic PAP with respect to mean PAP. We concluded that the pulmonary RC time constant is decreased in proximal CTEPH compared with IPAH, pre- and post-PEA, which may be explained by increased wave reflection but also, importantly, by persistent structural changes after the removal of proximal obstructions. A reduced RC time constant in CTEPH is in accord with a wider pulse pressure and hence greater right ventricular work for a given mean PAP.


2014 ◽  
Vol 8 (6) ◽  
pp. 388-393 ◽  
Author(s):  
Atif Afzal ◽  
Daniel Fung ◽  
Sean Galligan ◽  
Ellen M. Godwin ◽  
John G. Kral ◽  
...  

1999 ◽  
Vol 276 (2) ◽  
pp. H424-H428 ◽  
Author(s):  
N. Stergiopulos ◽  
P. Segers ◽  
N. Westerhof

We determined total arterial compliance from pressure and flow in the ascending aorta of seven anesthetized dogs using the pulse pressure method (PPM) and the decay time method (DTM). Compliance was determined under control and during occlusion of the aorta at four different locations (iliac, renal, diaphragm, and proximal descending thoracic aorta). Compliance of PPM gave consistently lower values (0.893 ± 0.015) compared with the compliance of DTM (means ± SE; r = 0.989). The lower compliance estimates by the PPM can be attributed to the difference in mean pressures at which compliance is determined (mean pressure, 81.0 ± 3.6 mmHg; mean diastolic pressure, over which the DTM applies, 67.0 ± 3.6 mmHg). Total arterial compliance under control conditions was 0.169 ± 0.007 ml/mmHg. Compliance of the proximal aorta, obtained during occlusion of the proximal descending aorta, was 0.100 ± 0.007 ml/mmHg. Mean aortic pressure was 80.4 ± 3.6 mmHg during control and 102 ± 7.7 mmHg during proximal descending aortic occlusion. From these results and assuming that upper limbs and the head contribute as little as the lower limbs, we conclude that 60% of total arterial compliance resides in the proximal aorta. When we take into account the inverse relationship between pressure and compliance, the contribution of the proximal aorta to the total arterial compliance is even more significant.


Sign in / Sign up

Export Citation Format

Share Document