Chemerin promotes the proliferation and migration of vascular smooth muscle and increases mouse blood pressure

2015 ◽  
Vol 309 (5) ◽  
pp. H1017-H1028 ◽  
Author(s):  
Hidemizu Kunimoto ◽  
Kyosuke Kazama ◽  
Mizuho Takai ◽  
Mayuko Oda ◽  
Muneyoshi Okada ◽  
...  

Blood chemerin concentration shows positive correlation not only with body mass index and serum triglyceride level but also with systolic blood pressure. While it seems likely that chemerin influences vascular smooth muscle cell (SMC) proliferation and migration, which are crucial to the development of hypertension, this remains to be clarified. In the present study, we investigated whether chemerin controls SMC proliferation and migration in vitro and also affects blood pressure in vivo. In vitro, chemerin significantly stimulated rat mesenteric arterial SMC proliferation and migration, as determined by a cell counting assay and Boyden chamber assay, respectively. The migratory effect of chemerin was confirmed in human aortic SMCs. Chemerin significantly increased ROS production in SMCs and phosphorylation of Akt (Ser473) and ERK, as measured by fluorescent staining and Western blot analysis, respectively. Various inhibitors (ROS inhibitor: N-acetyl-l-cysteine, phosphatidylinositol 3-kinase inhibitor: LY-294002, MAPKK inhibitor: PD-98059, NADPH oxidase inhibitor: gp91 ds-tat, and xanthine oxidase inhibitor: allopurinol) as well as chemokine-like receptor 1 small interfering RNA significantly inhibited chemerin-induced SMC proliferation and migration. Furthermore, chemerin-neutralizing antibody prevented carotid neointimal hyperplasia in the mouse ligation model. In vivo, chronic chemerin treatment (6 μg/kg, 6 wk) increased systolic blood pressure as well as phosphorylation of Akt and ERK in the mouse isolated aorta. In summary, we, for the first time, demonstrate that chemerin/chemokine-like receptor 1 stimulates SMC proliferation and migration via ROS-dependent phosphorylation of Akt/ERK, which may lead to vascular structural remodeling and an increase in systolic blood pressure.

Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Tatsuya Usui ◽  
Muneyoshi Okada ◽  
Hideyuki Yamawaki

Histone deacetylases (HDACs) are transcriptional co-regulators. We have recently demonstrated that a class IIa HDAC, HDAC4 promotes reactive oxygen species (ROS)-dependent vascular smooth muscle inflammation and mediates the development of hypertension in spontaneously hypertensive rats. Pathogenesis of hypertension is in part modulated by vascular structural remodeling via proliferation and migration of vascular smooth muscle cells (SMCs). We thus examined whether HDAC4 controls SMCs proliferation and migration. In rat mesenteric arterial SMCs, small interfering RNA (siRNA) against HDAC4 inhibited platelet-derived growth factor (PDGF)-BB-induced SMCs proliferation as determined by a cell counting (51% inhibition, n=7) or bromodeoxyuridine incorporation assay (95% inhibition, n=6) and migration as determined by Boyden chamber assay (71% inhibition, n=3). Expression and activity of HDAC4 were increased by PDGF-BB (30% increase, n=5 and 170% increase, n=4, respectively). HDAC4 siRNA inhibited phosphorylation of p38 (69% inhibition, n=5) and heat shock protein (HSP) 27 (91% inhibition, n=5) and expression of cyclin D1 (58% inhibition, n=5) as measured by Western blotting. HDAC4 siRNA also inhibited PDGF-BB-induce ROS production as measured fluorometrically using 2’ 7’-dichlorofluorescein diacetate (77% inhibition, n=4) and nicotinamide adenine dinucleotide phosphate oxidase activity as measured by lucigenin assay (61% inhibition, n=4). A Ca 2+ /calmodulin (CaM)-dependent protein kinase (CaMK) II inhibitor, KN93 inhibited PDGF-BB-induced SMCs proliferation (58% inhibition, n=4) and migration (75% inhibition, n=3) as well as phosphorylation of HDAC4 (84% inhibition, n=4). In vivo, a class IIa HDACs inhibitor, MC1568 prevented neointimal hyperplasia in mice carotid ligation model (54% inhibition, n=6). MC1568 also inhibited increased activity of HDAC4 in the neointimal lesions. The present results for the first time demonstrate that HDAC4 controls PDGF-BB-induced SMCs proliferation and migration through activation of p38/HSP27 signals via ROS generation in a CaMKII-dependent manner, which may lead to the neointima hyperplasia in vivo.


2018 ◽  
Vol 50 (5) ◽  
pp. 1740-1753 ◽  
Author(s):  
Shoucui Gao ◽  
Liran Xu ◽  
Yali Zhang ◽  
Qingqing Yu ◽  
Jiayan Li ◽  
...  

Background/Aims: The proliferation and migration of vascular smooth muscle cells (VSMCs) are key steps in the progression of atherosclerosis. The aim of the present study was to investigate the potential roles of salusin-α in the functions of VSMCs during the development of atherosclerosis. Methods: In vivo, the effects of salusin-α on atherogenesis were examined in rabbits fed a cholesterol diet. The aortas were en face stained with Sudan IV to evaluate the gross atherosclerotic lesion size. The cellular components of atherosclerotic plaques were analyzed by immunohistochemical methods. In vitro, Cell Counting Kit-8 and wound-healing assays were used to assess the effects of salusin-α on VSMC proliferation and migration. In addition, western blotting was used to evaluate the total and phosphorylated levels of Akt (also known as protein kinase B) and mammalian target of rapamycin (mTOR) in VSMCs. Results: Salusin-α infusion significantly reduced the aortic lesion areas of atherosclerosis, with a 39% reduction in the aortic arch, a 71% reduction in the thoracic aorta, and a 71% reduction in the abdominal aorta; plasma lipid levels were unaffected. Immunohistochemical staining showed that salusin-α decreased both macrophage- and VSMC-positively stained areas in atherosclerotic lesions by 54% and 69%, cell proliferative activity in the intima and media of arteriosclerotic lesions, and matrix metalloproteinase 2 (MMP-2) and MMP-9 expression in plaques. Studies using cultured VSMCs showed that salusin-α decreased VSMC migration and proliferation via reduced phosphorylation of Akt and mTOR. Conclusion: Our data indicate that salusin-α suppresses the development of atherosclerosis by inhibiting VSMC proliferation and migration through the Akt/mTOR pathway.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Haijun Wang ◽  
Zheng Wei ◽  
Hulun Li ◽  
Yinghui Guan ◽  
Zhiyang Han ◽  
...  

Abstract Vascular smooth muscle cell (VSMC) proliferation and migration are vital to atherosclerosis (AS) development and plaque rupture. MicroRNA-377-3p (miR-377-3p) has been reported to inhibit AS in apolipoprotein E knockout (ApoE−/−) mice. Herein, the mechanism underlying the effect of miR-377-3p on alleviating AS is explored. In vivo experiments, ApoE−/− mice were fed with high-fat diet (HFD) to induce AS and treated with miR-377-3p agomir or negative control agomir (agomir-NC) on week 0, 2, 4, 6, 8, 10 after HFD feeding. MiR-377-3p was found to restore HFD-induced AS lesions and expressions of matrix metalloproteinase (MMP)-2, MMP-9, α-smooth muscle actin (α-actin) and calponin. In in vitro experiments, human VSMCs were tranfected with miR-377-3p agomir or agomir-NC, followed by treatment with oxidized low-density lipoprotein (ox-LDL). MiR-377-3p was observed to significantly inhibit ox-LDL-induced VSMC proliferation characterized by inhibited cell viability, expressions of proliferating cell nuclear antigen (PCNA), cyclin D1 and cyclin E and cell cycle transition from G1 to S phase accompanied with less 5-Ethynyl-2′-deoxyuridine (EdU)-positive cells. Furthermore, MiR-377-3p significantly inhibited ox-LDL-induced VSMC migration characterized by inhibited wound closure and decreased relative VSMC migration. Besides, neuropilin2 (NRP2) was verified as a target of miR-377-3p. MiR-377-3p was observed to inhibit NRP2 expressions in vivo and in vitro. Moreover, miR-377-3p significantly inhibited MMP-2 and MMP-9 expressions in human VSMCs. Additionally, miR-377-3p-induced inhibition of VSMC proliferation and migration could be attenuated by NRP2 overexpression. These results indicated that miR-377-3p inhibited VSMC proliferation and migration via targeting NRP2. The present study provides an underlying mechanism for miR-377-3p-based AS therapy.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Chenjing Zhang ◽  
Xiaolu Zhou ◽  
Xiaoge Geng ◽  
Yu Zhang ◽  
Jingya Wang ◽  
...  

AbstractDysregulation of circular RNA (circRNA) expression is involved in the progression of cancer. Here, we aimed to study the potential function of hsa_circ_0006401 in colorectal cancer (CRC). CircRNA hsa_circ_0006401 expression levels in CRC and adjacent nontumor tissues were analyzed by real-time quantitative PCR (qRT-PCR) and circRNA in situ hybridization (RNA-ISH). Then, CRC cell proliferation was assessed by cell counting. Wound-healing and transwell assays were utilized to detect the effect of hsa_circ_0006401 on CRC migration. A circRNA-ORF construct was created, and a specific antibody against the splice junction of hsa_circ_0006401 was prepared. Finally, the proteins directly binding to hsa_circ_0006401 peptides were identified by immunoprecipitation combined with mass spectrometry. In our study, we found hsa_circ_0006401 was closely related to CRC metastasis and exhibited upregulated expression in metastatic CRC tissue samples. Proliferation and migration were inhibited in vitro when hsa_circ_0006401 expression was silenced. Downregulation of hsa_circ_0006401 expression decreased CRC proliferation and liver metastasis in vivo. A 198-aa peptide was encoded by sequences of the splice junction absent from col6a3. Hsa_circ_0006401 promoted CRC proliferation and migration by encoding the hsa_circ_0006401 peptide. Hsa_circ_0006401 peptides decreased the mRNA and protein level of the host gene col6a3 by promoting col6a3 mRNA stabilation. In conclusion, our study revealed that circRNAs generated from col6a3 that contain an open-reading frame (ORF) encode a novel 198-aa functional peptide and hsa_circ_0006401 peptides promote stability of the host gene col6a3 mRNA to promote CRC proliferation and metastasis.


Sign in / Sign up

Export Citation Format

Share Document