Muscle metaboreflex activation speeds the recovery of arterial blood pressure following acute hypotension in humans

2013 ◽  
Vol 304 (11) ◽  
pp. H1568-H1575 ◽  
Author(s):  
Masashi Ichinose ◽  
Kazuhito Watanabe ◽  
Naoto Fujii ◽  
Narihiko Kondo ◽  
Takeshi Nishiyasu

It has been suggested that the arterial baroreflex and muscle metaboreflex are both activated during heavy exercise and that they interact to modulate primary cardiovascular reflex responses. This proposed interaction and its consequences are not fully understood, however. The purpose of present study was to test our hypothesis that dynamic arterial baroreflex-mediated cardiovascular responses to acute systemic hypotension in humans are augmented when the muscle metaboreflex is active and that this results in a faster recovery of arterial blood pressure. Acute hypotension was induced nonpharmacologically in 12 healthy subjects by releasing bilateral thigh cuffs after 9 min of suprasystolic resting ischemia, with and without muscle metaboreflex activation via postexercise muscle ischemia (PEMI) after 1 min of isometric handgrip exercise at 50% maximum voluntary contraction. The thigh-cuff release evoked rapid reductions in mean arterial pressure (MAP) and increases in heart rate, cardiac output (Doppler), and total vascular conductance (TVC) under control conditions and during PEMI. The reductions in MAP from baseline were greater and the increases in TVC were smaller during PEMI than control. In addition, arterial baroreflex-mediated peripheral vasoconstriction was augmented during PEMI, as evidenced by a near doubling of the rate of recovery of MAP and TVC. These results show that when the muscle metaboreflex is activated in humans, arterial baroreflex-mediated peripheral vasoconstriction elicited in response to acute hypotension is augmented, which halves the time needed for MAP recovery. Such modulation of baroreflex function would be advantageous for maintaining an elevated arterial blood pressure during activation of the muscle metaboreflex.

2019 ◽  
Vol 43 (1) ◽  
pp. 34-41
Author(s):  
André L. Teixeira ◽  
Milena Samora ◽  
Lauro C. Vianna

The cardiovascular responses to exercise are mediated by several interactive neural mechanisms, including central command, arterial baroreflex, and skeletal muscle mechano- and metaboreflex. In humans, muscle metaboreflex activation can be isolated via postexercise ischemia (PEI), which increases sympathetic nerve activity and partially maintains the exercise-induced increase in arterial blood pressure. Here, we describe a practical laboratory class using PEI as a simple and useful technique to teach cardiovascular physiology. In an undergraduate exercise physiology class ( n = 47), a traditional 4-h lecture was conducted discussing the neural control mechanisms of cardiovascular regulation during exercise. Thereafter, eight students (4 men and 4 women) were selected to participate as a volunteer of a practical laboratory class. Each participant performed 90 s of isometric handgrip exercise at 40% of maximal voluntary contraction, followed by 3 min of PEI. Arterial blood pressure and heart rate were measured by digital monitors at rest and during isometric handgrip, PEI, and recovery. In addition, blood samples were collected from the tip of the exercising finger for blood lactate analyses. After the laboratory class, a survey was given to determine the perceptions of the students. The findings demonstrate that this laboratory class has proved to be highly popular with students, who self-reported a significant improvement in their understanding of several aspects of cardiovascular regulation during exercise.


2015 ◽  
Vol 309 (10) ◽  
pp. R1273-R1284 ◽  
Author(s):  
Jennifer Magnusson ◽  
Kevin J. Cummings

The role of serotonin (5-HT) neurons in cardiovascular responses to acute intermittent hypoxia (AIH) has not been studied in the neonatal period. We hypothesized that a partial loss of 5-HT neurons would reduce arterial blood pressure (BP) at rest, increase the fall in BP during hypoxia, and reduce the long-term facilitation of breathing (vLTF) and BP following AIH. We exposed 2-wk-old, 5,7-dihydroxytryptamine-treated and controls to AIH (10% O2; n = 13 control, 14 treated), acute intermittent hypercapnia (5% CO2; n = 12 and 11), or acute intermittent hypercapnic hypoxia (AIHH; 10% O2, 5% CO2; n = 15 and 17). We gave five 5-min challenges of AIH and acute intermittent hypercapnia, and twenty ∼20-s challenges of AIHH to mimic sleep apnea. Systolic BP (sBP), diastolic BP, mean arterial pressure, heart rate (HR), ventilation (V̇e), and metabolic rate (V̇o2) were continuously monitored. 5,7-Dihydroxytryptamine induced an ∼35% loss of 5-HT neurons from the medullary raphe. Compared with controls, pups deficient in 5-HT neurons had reduced resting sBP (∼6 mmHg), mean arterial pressure (∼5 mmHg), and HR (56 beats/min), and experienced a reduced drop in BP during hypoxia. AIHH induced vLTF in both groups, reflected in increased V̇e and V̇e/V̇o2, and decreased arterial Pco2. The sBP of pups deficient in 5-HT neurons, but not controls, was increased 1 h following AIHH. Our data suggest that a relatively small loss of 5-HT neurons compromises resting BP and HR, but has no influence on ventilatory plasticity induced by AIHH. AIHH may be useful for reversing cardiorespiratory defects related to partial 5-HT system dysfunction.


PEDIATRICS ◽  
1995 ◽  
Vol 96 (6) ◽  
pp. 1101-1105
Author(s):  
Sai-Woon Liang ◽  
John M. Jemerin ◽  
Jeanne M. Tschann ◽  
Charles E. Irwin ◽  
Diane W. Wara ◽  
...  

Background. Risk behavior contributes to injuries, one of the most important sources of morbidity and mortality in adolescents. Although research has shown that environmental stress makes adolescents more likely to engage in risk behavior and to sustain injuries, the magnitude of these associations has been small. Little is known about the role of individual differences in psychobiologic reactivity to stress in moderating the impact of stressful events. In this study, we examined associations among environmental stressors, cardiovascular reactivity to stress, and the level of risk behavior in adolescent boys. Methods. Twenty-four 14- to 16-year-old boys underwent a laboratory protocol designed to measure responses to psychologically and physically stressful tasks. Changes in heart rate and mean arterial blood pressure were measured serially at standard points in the protocol, and levels of positive and negative life events and recent risk behavior were measured using self-report questionnaires. Results. Neither life events nor cardiovascular reactivity were independently associated with risk behavior. Positive life events and mean arterial blood pressure reactivity significantly interacted, however, in predicting risk behavior (R2 increment = .25). Boys with high reactivity who reported numerous positive life events engaged in markedly less risk behavior than their peers. Conclusion. We conclude that adolescents with exaggerated cardiovascular responses to laboratory stressors are associated with less risk behavior in a setting of positive life circumstances. This result suggests that reactivity may exert protective, rather than harmful, influences in some environments.


1991 ◽  
Vol 261 (2) ◽  
pp. R420-R426
Author(s):  
M. Inoue ◽  
J. T. Crofton ◽  
L. Share

We have examined in conscious rats the interaction between centrally acting prostanoids and acetylcholine in the stimulation of vasopressin secretion. The intracerebroventricular (icv) administration of carbachol (25 ng) resulted in marked transient increases in the plasma vasopressin concentration and mean arterial blood pressure and a transient reduction in heart rate. Central cyclooxygenase blockade by pretreatment icv with either meclofenamate (100 micrograms) or indomethacin (100 micrograms) virtually completely blocked these responses. Prostaglandin (PG) D2 (20 micrograms icv) caused transient increases in the plasma vasopressin concentration (much smaller than after carbachol) and heart rate, whereas mean arterial blood pressure rose gradually during the 15-min course of the experiment. Pretreatment with the muscarinic antagonist atropine (10 micrograms icv) decreased the peak vasopressin response to icv PGD2 by approximately one-third but had no effect on the cardiovascular responses. We conclude that the stimulation of vasopressin release by centrally acting acetylcholine is dependent on increased prostanoid biosynthesis. On the other hand, stimulation of vasopressin release by icv PGD2 is partially dependent on activation of a cholinergic pathway.


Author(s):  
Rachel J. Skow ◽  
Andrew R. Steele ◽  
Graham M. Fraser ◽  
Margie H. Davenport ◽  
Craig D. Steinback

Isometric handgrip (IHG) is used to assess sympathetic nervous system responses to exercise and may be useful at predicting hypertension in both pregnant and non-pregnant populations. We have previously observed altered sympathetic nervous system control of blood pressure in late pregnancy. Therefore, we measured muscle sympathetic nerve activity (MSNA) and blood pressure during muscle metaboreflex activation (IHG) in normotensive pregnant women in the third trimester compared to healthy non-pregnant women. Nineteen pregnant (32±3wks gestation) and fourteen non-pregnant women were matched for age, non/pre-pregnant BMI, and parity. MSNA (microneurography), heart rate (ECG), and arterial blood pressure (Finometer) were continuously recorded during ten minutes of rest, and then during two-minutes of IHG at 30% of maximal voluntary contraction, and two-minutes of post-exercise circulatory occlusion (PECO). Baseline SNA was elevated in pregnant (41±11 bursts/min) compared to non-pregnant women (27 ± 9 bursts/minute; p=0.005); however, the sympathetic baroreflex gain and neurovascular transduction were not different between groups (p=0.62 and p=0.32, respectively). During IHG and PECO there was no significant differences in the pressor response (∆MAP) during IHG and PECO was not different between groups (p=0.25, main effect of group) nor the sympathetic response (interaction effect: p=0.16, 0.25, and 0.27 for burst frequency, burst incidence, and total SNA respectively). These data suggest that pregnant women who have maintained sympathetic baroreflex and neurovascular transduction also have similar sympathetic and pressor responses during exercise.


1981 ◽  
Author(s):  
G J Stewart ◽  
R G Schaub ◽  
R E Cartee

This study was done to correlate known cardiovascular responses to bradykinin (increased heart rate, lowered arterial blood pressure) with recently demonstrated endothelial damage and proposed venous dilation. Healthy dogs of mixed breed were used. Blood pressures and heart rate were monitored and recorded on a Narco physiograph. The diameter of a jugular vein was monitored with an ADR ultrasound machine using a 10 MHz probe with linear array of crystals and recorded on polaroid prints. Jugular veins and carotid arteries were removed and prepared for scanning electron microscopy after removal of blood and partial in situ fixation by whole body perfusion. The response of arterial pressure was dose dependent with no change at 6 ug/min, variable drop at 12 ug/min and 22-40% drop at 60 ug/min and above. Venous pressure increased in 1 dog but was unchanged in 4 others. The increase of heart rate paralled the drop in arterial blood pressure. The diameter of a jugular vein increased in 3 of 3 monitored dogs by 25, 33, 50% of baseline diameter (average increase 36%) with high (300 ug/min) bradykinin. Endothelial damage (microtears) occurred around 70-80% of branches, at some valves and on the main vessel occassionally. The tears were infiltrated with leukocytes and some red cells and platelets indicating that tearing occurred while blood was still circulating, i.e. before dissection for removal of vessels. Carotid arteries showed no tears. Dilation of arteries would be limited by their elastic layers (missing in veins). These observations show that venous dilation and endothelial tearing around side branches are part of the cardiovascular response to blood born bradykinin. They also show that venous dilation can be measured by ultrasound.


1989 ◽  
Vol 256 (6) ◽  
pp. H1546-H1552 ◽  
Author(s):  
M. W. Barazanji ◽  
K. G. Cornish

The effect of arginine vasopressin (AVP) on the arterial baroreflex control of heart rate (HR) was studied in intact and sinoaortic-denervated (SAD) conscious, unrestrained monkeys. A baroreflex curve for mean arterial blood pressure (MABP) and HR was determined before and during intravenous infusion of AVP (2-4 mU.kg-1.min-1) and after the AVP vascular antagonist "Manning compound" [( d(CH2)5Tyr(Me)]AVP, 40 micrograms/kg), while AVP infusion was kept running. The sensitivity (slope) of the arterial baroreflex, as well as the reflex bradycardia induced by high blood pressure, increased significantly during AVP and returned to the control level after Manning compound. The effect of AVP on the Bezold-Jarisch reflex (induced by stimulating left ventricular receptors with 4 micrograms/kg veratridine injected in the left atrium) was also studied. The cardiovascular responses to veratridine were examined before and during AVP and after administration of Manning compound together with AVP infusion. AVP significantly potentiated the hypotension and the bradycardia produced by veratridine, whereas Manning compound blunted this potentiation. The ventricular reflex in SAD monkeys was significantly greater than in intact monkeys. We conclude that, in the conscious nonhuman primate, AVP potentiates the sensitivity of the baroreflex control of HR as well as the Bezold-Jarisch reflex. The potentiation of the Bezold-Jarisch reflex by AVP in the SAD animals is consistent with a central action, since the baroreceptors and ventricular receptors both have connections in the nucleus tractus solitarius. However, it does not rule out the possibility of peripheral actions on receptors or end organs.


2005 ◽  
Vol 289 (6) ◽  
pp. H2416-H2423 ◽  
Author(s):  
Jong-Kyung Kim ◽  
Javier A. Sala-Mercado ◽  
Robert L. Hammond ◽  
Jaime Rodriguez ◽  
Tadeusz J. Scislo ◽  
...  

Previous studies have shown that heart failure (HF) or sinoaortic denervation (SAD) alters the strength and mechanisms of the muscle metaboreflex during dynamic exercise. However, it is still unknown to what extent SAD may modify the muscle metaboreflex in HF. Therefore, we quantified the contribution of cardiac output (CO) and peripheral vasoconstriction to metaboreflex-mediated increases in mean arterial blood pressure (MAP) in conscious, chronically instrumented dogs before and after induction of HF in both barointact and SAD conditions during mild and moderate exercise. The muscle metaboreflex was activated via partial reductions in hindlimb blood flow. After SAD, the metaboreflex pressor responses were significantly higher with respect to the barointact condition despite lower CO responses. The pressor response was significantly lower in HF after SAD but still higher than that of HF in the barointact condition. During control experiments in the barointact condition, total vascular conductance summed from all beds except the hindlimbs did not change with muscle metaboreflex activation, whereas in the SAD condition both before and after induction of HF significant vasoconstriction occurred. We conclude that SAD substantially increased the contribution of peripheral vasoconstriction to metaboreflex-induced increases in MAP, whereas in HF SAD did not markedly alter the patterns of the reflex responses, likely reflecting that in HF the ability of the arterial baroreflex to buffer metaboreflex responses is impaired.


2012 ◽  
Vol 113 (1) ◽  
pp. 183-190 ◽  
Author(s):  
Konrad Binder ◽  
Daniel Gagnon ◽  
Aaron G. Lynn ◽  
Narihiko Kondo ◽  
Glen P. Kenny

1985 ◽  
Vol 63 (6) ◽  
pp. 760-765 ◽  
Author(s):  
D. F. Biggs ◽  
V. Goel

The effects of sodium cromoglycate (SCG) on cardiovascular and pulmonary responses to phenylbiguanide, capsaicin, and vagal stimulation were studied in anesthetized guinea pigs. Phenylbiguanide had no bronchospastic activity but induced reflex changes in arterial blood pressure which were reduced or abolished by SCG. Capsaicin induced nonreflex bronchospasm, and decreases in arterial blood pressure that were unaffected by SCG. Sodium cromoglycate, given before or after atropine, had no effect on the bronchospasm and cardiovascular responses to unilateral or bilateral stimulation of the vagus nerves. We conclude that SCG may influence both the afferent and efferent pathways of responses to drugs.


Sign in / Sign up

Export Citation Format

Share Document