Morphological and biochemical characterization of remodeling in aorta and vena cava of DOCA-salt hypertensive rats

2007 ◽  
Vol 292 (5) ◽  
pp. H2438-H2448 ◽  
Author(s):  
Stephanie W. Watts ◽  
Catherine Rondelli ◽  
Keshari Thakali ◽  
Xiaopeng Li ◽  
Bruce Uhal ◽  
...  

Arterial remodeling occurs in response to mechanical and neurohumoral stimuli. We hypothesized that veins, which are not exposed to higher pressures in hypertension, would demonstrate less active remodeling than arteries. We assessed remodeling with two standard measures of arterial remodeling: vessel morphometry and the expression/function of matrix metalloproteinases (MMPs). Thoracic aorta and vena cava from sham normotensive and DOCA-salt hypertensive rats (110 ± 4 and 188 ± 8 mmHg systolic blood pressure, respectively) were used. Wall thickness was increased in DOCA-salt vs. sham aorta (301 ± 23 vs. 218 ± 14 μm, P < 0.05), as was medial area, but neither measure was altered in the vena cava. The aorta and vena cava expressed the gelatinases MMP-2, MMP-9, transmembrane proteinase MT1-MMP, and tissue inhibitor of metalloproteinase-2 (TIMP-2). Immunohistochemically, MMP-2 localized to smooth muscle in the aorta and densely in endothelium/smooth muscle of the vena cava. Western and zymographic analyses verified that MMP-2 was active in all vessels and less active in the vena cava than aorta. In hypertension, MMP-2 expression and activity in the aorta were increased (59.1 ± 3.7 and 74.5 ± 6.1 units in sham and DOCA, respectively, P < 0.05); similar elevations were not observed in the vena cava. MMP-9 was weakly expressed in all vessels. MT1-MMP was expressed by the aorta and vena cava and elevated in the vena cava from DOCA-salt rats. TIMP-2 expression was significantly increased in the aorta of DOCA rats compared with sham but was barely detectable in the vena cava of sham or DOCA-salt hypertensive rats. These findings suggest that large veins may not undergo vascular remodeling in DOCA-salt hypertension.

1993 ◽  
Vol 265 (5) ◽  
pp. H1501-H1509 ◽  
Author(s):  
P. Ping ◽  
J. E. Faber

Six genes coding for three unique alpha 1- (1A, 1B, 1C) and three unique alpha 2- (2A, 2B, 2C) adrenergic receptor (AR) subtypes have been cloned. Ligand binding and contractile studies have demonstrated that both alpha 1- and alpha 2-ARs can exist on vascular smooth muscle (VSM) cells, although less is known about the relative distribution and specific subtypes in different vascular segments. In the present study polymerase chain reaction (PCR) analysis was used to characterize the species of alpha-AR messenger RNA (mRNA) present in freshly isolated rat thoracic aortic media and vena cava and in cultured VSM cells (passage 2) derived from both sources. To prevent possible contamination of VSM mRNA, aortic media was separated from adventitia, and vessels were denuded of endothelial cells. Oligonucleotide primers specific for each of the six adrenergic genes were synthesized and used to probe for the presence of alpha-AR mRNA species after reverse transcription of total cellular RNA to cDNA. PCR-amplified AR transcripts were distinguished by the size of amplified DNA fragments and unique restriction endonuclease cleavage. Expression of alpha 1C- or alpha 2C-mRNA was not detected in vascular tissues or cultured VSM cells, although the alpha 2C-primers detected the expected alpha 2C expression in cerebral cortex. Only alpha 1A-mRNA was detected in aortic adventitia. VSM from aorta expressed alpha 1A-, alpha 1B-, and alpha 2A-mRNA, and this pattern was preserved in cultured aortic VSM. Vena cava also expressed both alpha 1A and alpha 1B; however only alpha 2B-mRNA was detected.(ABSTRACT TRUNCATED AT 250 WORDS)


2001 ◽  
Vol 25 (1) ◽  
pp. 98-103 ◽  
Author(s):  
Adolfo Borges ◽  
Sinaı́ Sánchez de Villarroel ◽  
Nena J. Winand ◽  
Itala Lippo de Bécemberg ◽  
Marcelo J. Alfonzo ◽  
...  

Toxicon ◽  
1993 ◽  
Vol 31 (4) ◽  
pp. 377-384 ◽  
Author(s):  
S. Marangoni ◽  
N.C.C. Borges ◽  
R.A. Marangoni ◽  
E. Antunes ◽  
C.A. Vieira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document