Key role of α1β1-integrin in the activation of PI3-kinase-Akt by flow (shear stress) in resistance arteries

2008 ◽  
Vol 294 (4) ◽  
pp. H1906-H1913 ◽  
Author(s):  
Laurent Loufrani ◽  
Kevin Retailleau ◽  
Arnaud Bocquet ◽  
Odile Dumont ◽  
Kerstin Danker ◽  
...  

Resistance arteries are the site of the earliest manifestations of many cardiovascular and metabolic diseases. Flow (shear stress) is the main physiological stimulus for the endothelium through the activation of vasodilatory pathways generating flow-mediated dilation (FMD). The role of FMD in local blood flow control and angiogenesis is well established, and alterations in FMD are early markers of cardiovascular disorders. α1-Integrin, which has a role in angiogenesis, could be involved in FMD. FMD was studied in mesenteric resistance arteries (MRA) isolated in arteriographs. The role of α1-integrins in FMD was tested with selective antibodies and mice lacking the gene encoding for α1-integrins. Both anti-α1blocking antibodies and genetic deficiency in α1-integrin in mice (α1−/−) inhibited FMD without affecting receptor-mediated (acetylcholine) endothelium-dependent dilation or endothelium-independent dilation (sodium nitroprusside). Similarly, vasoconstrictor tone (myogenic tone and phenylephrine-induced contraction) was not affected. In MRA phosphorylated Akt and phosphatidylinositol 3-kinase (PI3-kinase) were significantly lower in α1−/−mice than in α1+/+mice, although total Akt and endothelial nitric oxide synthase (eNOS) were not affected. Pharmacological blockade of PI3-kinase-Akt pathway with LY-294002 inhibited FMD. This inhibitory effect of LY-294002 was significantly lower in α1−/−mice than in α1+/+mice. Thus α1-integrin has a key role in flow (shear stress)-dependent vasodilation in resistance arteries by transmitting the signal to eNOS through activation of PI3-kinase and Akt. Because of the central role of flow (shear stress) activation of the endothelium in vascular disorders, this finding opens new perspectives in the pathophysiology of the microcirculation and provides new therapeutic targets.

2009 ◽  
Vol 102 ◽  
pp. S94
Author(s):  
M.-L. Freidja ◽  
E. Vessieres ◽  
B. Toutain ◽  
L. Loufrani ◽  
S. Faure ◽  
...  

2007 ◽  
Vol 77 (3) ◽  
pp. 600-608 ◽  
Author(s):  
O. Dumont ◽  
F. Pinaud ◽  
A.-L. Guihot ◽  
C. Baufreton ◽  
L. Loufrani ◽  
...  

1997 ◽  
Vol 272 (2) ◽  
pp. H714-H721 ◽  
Author(s):  
E. D. McGahren ◽  
K. A. Dora ◽  
D. N. Damon ◽  
B. R. Duling

At an arteriolar bifurcation, occlusion of one of the branch arterioles has been reported to result in an increase in flow, shear stress, and vasodilation in the opposite unoccluded branch. This dilator response in the unoccluded branch, often referred to as the "parallel occlusion response," has been cited as evidence that flow-dependent dilation is a primary regulator of arteriolar diameter in the microcirculation. It has not been previously noted that, during this maneuver, flow through the feed arteriole would be expected to decrease and logically should cause that vessel to constrict. We tested this prediction in vivo by measuring red blood cell (RBC) velocity and diameter changes in response to arteriolar occlusion in the microcirculatory beds of three preparations: the hamster cheek pouch, the hamster cremaster, and the rat cremaster. In all preparations, a vasodilation was observed in the feed arteriole, despite a decrease in both flow and calculated wall shear stress through this vessel. Unexpectedly, we found that dilation occurred in the unoccluded branch arterioles even in those cases in which RBC velocity and shear stress did not increase in the unoccluded branch arterioles. All values returned to the baseline level after the removal of occlusion. The magnitude of the dilation of the feed and branch arterioles varied between species and tissues, but feed and branch arterioles within a given preparation always responded in a similar way to each other. We conclude from our experiments that mechanisms other than flow-dependent dilation are involved in the vasodilation observed in the microcirculation during occlusion of an arteriolar branch.


2009 ◽  
Vol 16 (5) ◽  
pp. 391-402 ◽  
Author(s):  
Eric J. Belin De Chantemèle ◽  
Emilie Vessières ◽  
Odile Dumont ◽  
Anne-Laure Guihot ◽  
Bertrand Toutain ◽  
...  

Author(s):  
Cara F. Buchanan ◽  
Elizabeth Voigt ◽  
Pavlos P. Vlachos ◽  
Marissa Nichole Rylander

As solid tumors develop, a variety of physical stresses arise including growth induced compressive force, matrix stiffening due to desmoplasia, and increased interstitial fluid pressure and altered flow patterns due to leaky vasculature and poor lymphatic drainage [1]. These microenvironmental stresses likely contribute to the abnormal cell behavior that drives tumor progression, and have become an increasingly significant area of cancer research. Of particular importance, is the role of flow shear stress on tumor-endothelial signaling, vascular function, and angiogenesis. Compared to normal vasculature, blood vessels in tumors are poorly functional due to dysregulated expression of angiogenic growth factors, such as vascular endothelial growth factor (VEGF) or the angiopoietins. Also, because of the abnormal vessel structure, blood velocities can be an order of magnitude lower than that of normal microvessels. Recently published work utilizing intravital microscopy to measure blood velocities in mouse mammary fat pad tumors, demonstrated for the first time that shear rate gradients in tumors may help guide branching and growth of new vessels [2]. However, much still remains unknown about how shear stress regulates endothelial organization, permeability, or expression of growth factors within the context of the tumor microenvironment.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Ping Zhao ◽  
Xiao Liu ◽  
Xing Zhang ◽  
Li Wang ◽  
Haoran Su ◽  
...  

The role of shear stress was investigated in a biomimetic microfluidic model that recapitulates the initial physiological microenvironment of neovascularization.


2002 ◽  
Vol 64 (1) ◽  
pp. 127-134 ◽  
Author(s):  
Diane Gorny ◽  
Laurent Loufrani ◽  
Nathalie Kubis ◽  
Bernard I. Lévy ◽  
Daniel Henrion

1998 ◽  
Vol 274 (1) ◽  
pp. H382-H383 ◽  
Author(s):  
Akos Koller gabor Kaley

The following is the abstract of the article discussed in the subsequent letter: McGahren, Eugene D., Kim A. Dora, David N. Damon, and Brian R. Duling. A test of the role of flow-dependent dilation in arteriolar responses to occlusion. Am. J. Physiol. 272 ( Heart Circ. Physiol. 41): H714–H721, 1997.—At an arteriolar bifurcation, occlusion of one of the branch arterioles has been reported to result in an increase in flow, shear stress, and vasodilation in the opposite unoccluded branch. This dilator response in the unoccluded branch, often referred to as the “parallel occlusion response,” has been cited as evidence that flow-dependent dilation is a primary regulator of arteriolar diameter in the microcirculation. It has not been previously noted that, during this maneuver, flow through the feed arteriole would be expected to decrease and logically should cause that vessel to constrict. We tested this prediction in vivo by measuring red blood cell (RBC) velocity and diameter changes in response to arteriolar occlusion in the microcirculatory beds of three preparations: the hamster cheek pouch, the hamster cremaster, and the rat cremaster. In all preparations, a vasodilation was observed in the feed arteriole, despite a decrease in both flow and calculated wall shear stress through this vessel. Unexpectedly, we found that dilation occurred in the unoccluded branch arterioles even in those cases in which RBC velocity and shear stress did not increase in the unoccluded branch arterioles. All values returned to the baseline level after the removal of occlusion. The magnitude of the dilation of the feed and branch arterioles varied between species and tissues, but feed and branch arterioles within a given preparation always responded in a similar way to each other. We conclude from our experiments that mechanisms other than flow-dependent dilation are involved in the vasodilation observed in the microcirculation during occlusion of an arteriolar branch.


2012 ◽  
Vol 57 (5-6) ◽  
pp. 173-178 ◽  
Author(s):  
Emilie Vessières ◽  
Mohamed L. Freidja ◽  
Laurent Loufrani ◽  
Céline Fassot ◽  
Daniel Henrion

Sign in / Sign up

Export Citation Format

Share Document