flow shear stress
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 21)

H-INDEX

29
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Sophie Marbach ◽  
Noah Ziethen ◽  
Leonie Bastin ◽  
Felix Baeuerle ◽  
Karen Alim

Vascular networks continuously reorganize their morphology by growing new or shrinking existing veins to optimize function. Flow shear stress on vein walls has been set forth as the local driver for this continuous adaptation. Yet, shear feedback alone cannot account for the observed diversity of network dynamics -- a puzzle made harder by scarce spatio-temporal data. Here, we resolve network-wide vein dynamics and shear during spontaneous reorganization in the prototypical vascular networks of Physarum polycephalum. Our experiments reveal a plethora of vein dynamics (stable, growing, shrinking) that are not directly proportional to local shear. We observe (a) that shear rate sensing on vein walls occurs with a time delay of 1 to 3 min and (b) that network architecture dependent parameters -- such as relative pressure or relative vein resistance -- are key to determine vein fate. We derive a model for vascular adaptation, based on force balance at the vein walls. Together with the time delay, our model reproduces the diversity of experimentally observed vein dynamics, and confirms the role of network architecture. Finally, we observe avalanches of network reorganization events which cause entire clusters of veins to vanish. Such avalanches are consistent with architectural feedback as the vein connections perpetually change with reorganization. As these network architecture dependent parameters are intrinsically connected with the laminar fluid flow in the veins, we expect our findings to play a role across flow-based vascular networks.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3128
Author(s):  
Thomas R. Coughlin ◽  
Ali Sana ◽  
Kevin Voss ◽  
Abhilash Gadi ◽  
Upal Basu-Roy ◽  
...  

Osteosarcoma (OS) is an aggressive bone cancer originating in the mesenchymal lineage. Prognosis for metastatic disease is poor, with a mortality rate of approximately 40%; OS is an aggressive disease for which new treatments are needed. All bone cells are sensitive to their mechanical/physical surroundings and changes in these surroundings can affect their behavior. However, it is not well understood how OS cells specifically respond to fluid movement, or substrate stiffness—two stimuli of relevance in the tumor microenvironment. We used cells from spontaneous OS tumors in a mouse engineered to have a bone-specific knockout of pRb-1 and p53 in the osteoblast lineage. We silenced Sox2 (which regulates YAP) and tested the effect of fluid flow shear stress (FFSS) and substrate stiffness on YAP expression/activity—which was significantly reduced by loss of Sox2, but that effect was reversed by FFSS but not by substrate stiffness. Osteogenic gene expression was also reduced in the absence of Sox2 but again this was reversed by FFSS and remained largely unaffected by substrate stiffness. Thus we described the effect of two distinct stimuli on the mechanosensory and osteogenic profiles of OS cells. Taken together, these data suggest that modulation of fluid movement through, or stiffness levels within, OS tumors could represent a novel consideration in the development of new treatments to prevent their progression.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1253
Author(s):  
Tarak Srivastava ◽  
Daniel P. Heruth ◽  
R. Scott Duncan ◽  
Mohammad H. Rezaiekhaligh ◽  
Robert E. Garola ◽  
...  

Increased fluid flow shear stress (FFSS) in solitary kidney alters podocyte function in vivo. FFSS-treated cultured podocytes show upregulated AKT-GSK3β-β-catenin signaling. The present study was undertaken to confirm (i) the activation of β-catenin signaling in podocytes in vivo using unilaterally nephrectomized (UNX) TOPGAL mice with the β-galactosidase reporter gene for β-catenin activation, (ii) β-catenin translocation in FFSS-treated mouse podocytes, and (iii) β-catenin signaling using publicly available data from UNX mice. The UNX of TOPGAL mice resulted in glomerular hypertrophy and increased the mesangial matrix consistent with hemodynamic adaptation. Uninephrectomized TOPGAL mice showed an increased β-galactosidase expression at 4 weeks but not at 12 weeks, as assessed using immunofluorescence microscopy (p < 0.001 at 4 weeks; p = 0.16 at 12 weeks) and X-gal staining (p = 0.008 at 4 weeks; p = 0.65 at 12 weeks). Immunofluorescence microscopy showed a significant increase in phospho-β-catenin (Ser552, p = 0.005) at 4 weeks but not at 12 weeks (p = 0.935) following UNX, and the levels of phospho-β-catenin (Ser675) did not change. In vitro FFSS caused a sustained increase in the nuclear translocation of phospho-β-catenin (Ser552) but not phospho-β-catenin (Ser675) in podocytes. The bioinformatic analysis of the GEO dataset, #GSE53996, also identified β-catenin as a key upstream regulator. We conclude that transcription factor β-catenin mediates FFSS-induced podocyte (glomerular) injury in solitary kidney.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250741
Author(s):  
Yoshimasa Takafuji ◽  
Kohei Tatsumi ◽  
Naoyuki Kawao ◽  
Kiyotaka Okada ◽  
Masafumi Muratani ◽  
...  

The interactions between skeletal muscle and bone have been recently noted, and muscle-derived humoral factors related to bone metabolism play crucial roles in the muscle/bone relationships. We previously reported that extracellular vesicles from mouse muscle C2C12 cells (Myo-EVs) suppress osteoclast formation in mice. Although mechanical stress is included in extrinsic factors which are important for both muscle and bone, the detailed roles of mechanical stress in the muscle/bone interactions have still remained unknown. In present study, we examined the effects of fluid flow shear stress (FFSS) to C2C12 cells on the physiological actions of muscle cell-derived EV. Applying FFSS to C2C12 cells significantly enhanced muscle cell-derived EV-suppressed osteoclast formation and several osteoclast-related gene levels in mouse bone marrow cells in the presence of receptor activator nuclear factor κB ligand (RANKL). Moreover, FFSS to C2C12 cells significantly enhanced muscle cell-derived EV-suppressed mitochondria biogenesis genes during osteoclast formation with RANKL treatment. In addition, FFSS to C2C12 cells significantly enhanced muscle cell-derived EV-suppressed osteoclast formation and several osteoclast-related gene levels in Raw264.7 cells in the presence of RANKL. Small RNA-seq-analysis showed that FFSS elevated the expression of miR196a-5p and miR155-5p with the suppressive actions of osteoclast formation and low expression in mouse bone cells. On the other hand, muscle cell-derived EVs with or without FFSS to C2C12 cells did not affect the expression of osteogenic genes, alkaline phosphatase activity and mineralization in mouse osteoblasts. In conclusion, we first showed that FFSS to C2C12 cells enhances the suppressive effects of muscle cell-derived EVs on osteoclast formation in mouse cells. Muscle cell-derived EVs might be partly involved in the effects of mechanical stress on the muscle/bone relationships.


2021 ◽  
Vol 118 (16) ◽  
pp. e2022461118
Author(s):  
Pinkal D. Patel ◽  
Yen-Lin Chen ◽  
Ramesh B. Kasetti ◽  
Prabhavathi Maddineni ◽  
William Mayhew ◽  
...  

Primary Open Angle Glaucoma (POAG) is the most common form of glaucoma that leads to irreversible vision loss. Dysfunction of trabecular meshwork (TM) tissue, a major regulator of aqueous humor (AH) outflow resistance, is associated with intraocular pressure (IOP) elevation in POAG. However, the underlying pathological mechanisms of TM dysfunction in POAG remain elusive. In this regard, transient receptor potential vanilloid 4 (TRPV4) cation channels are known to be important Ca2+ entry pathways in multiple cell types. Here, we provide direct evidence supporting Ca2+ entry through TRPV4 channels in human TM cells and show that TRPV4 channels in TM cells can be activated by increased fluid flow/shear stress. TM-specific TRPV4 channel knockout in mice elevated IOP, supporting a crucial role for TRPV4 channels in IOP regulation. Pharmacological activation of TRPV4 channels in mouse eyes also improved AH outflow facility and lowered IOP. Importantly, TRPV4 channels activated endothelial nitric oxide synthase (eNOS) in TM cells, and loss of eNOS abrogated TRPV4-induced lowering of IOP. Remarkably, TRPV4-eNOS signaling was significantly more pronounced in TM cells compared to Schlemm’s canal cells. Furthermore, glaucomatous human TM cells show impaired activity of TRPV4 channels and disrupted TRPV4-eNOS signaling. Flow/shear stress activation of TRPV4 channels and subsequent NO release were also impaired in glaucomatous primary human TM cells. Together, our studies demonstrate a central role for TRPV4-eNOS signaling in IOP regulation. Our results also provide evidence that impaired TRPV4 channel activity in TM cells contributes to TM dysfunction and elevated IOP in glaucoma.


Author(s):  
Fan-E Mo

Mechanical forces imposed by blood flow shear stress directly modulate endothelial gene expression and functional phenotype. The production of extracellular matrix proteins and corresponding cell-surface integrin receptors in arterial endothelial cells is intricately regulated by blood flow patterns. Laminar blood flow promotes mature and atheroresistant endothelial phenotype, while disturbed flow induces dysfunctional and atheroprone endothelial responses. Here, we discuss how hemodynamic changes orchestrate the remodeling of extracellular microenvironments and the expression profile of the integrin receptors in endothelial cells leading to oxidative stress and inflammation. Targeting the interaction between matrix proteins and their corresponding integrins is a potential therapeutic approach for atherosclerosis.


Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Manuel A. Riquelme ◽  
Sumin Gu ◽  
Rui Hua ◽  
Jean X. Jiang

AbstractMechanical loading opens connexin 43 (Cx43) hemichannels (HCs), leading to the release of bone anabolic molecules, such as prostaglandins, from mechanosensitive osteocytes, which is essential for bone formation and remodeling. However, the mechanotransduction mechanism that activates HCs remains elusive. Here, we report a unique pathway by which mechanical signals are effectively transferred between integrin molecules located in different regions of the cell, resulting in HC activation. Both integrin α5 and αV were activated upon mechanical stimulation via either fluid dropping or flow shear stress (FSS). Inhibition of integrin αV activation or ablation of integrin α5 prevented HC opening on the cell body when dendrites were mechanically stimulated, suggesting mechanical transmission from the dendritic integrin αV to α5 in the cell body during HC activation. In addition, HC function was compromised in vivo, as determined by utilizing an antibody blocking αV activation and α5-deficient osteocyte-specific knockout mice. Furthermore, inhibition of integrin αV activation, but not that of α5, attenuated activation of the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway upon mechanical loading, and the inhibition of PI3K/AKT activation blocked integrin α5 activation and HC opening. Moreover, HC opening was blocked only by an anti-integrin αV antibody at low but not high FSS levels, suggesting that dendritic αV is a more sensitive mechanosensor than α5 for activating HCs. Together, these results reveal a new molecular mechanism of mechanotransduction involving the coordinated actions of integrins and PI3K/AKT in osteocytic dendritic processes and cell bodies that leads to HC opening and the release of key bone anabolic factors.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Ping Zhao ◽  
Xiao Liu ◽  
Xing Zhang ◽  
Li Wang ◽  
Haoran Su ◽  
...  

The role of shear stress was investigated in a biomimetic microfluidic model that recapitulates the initial physiological microenvironment of neovascularization.


2020 ◽  
Vol 99 ◽  
pp. 324-330
Author(s):  
Chin-Tsan Wang ◽  
Raymond Chong Ong Tang ◽  
Men-Wei Wu ◽  
Akhil Garg ◽  
Aristotle T. Ubando ◽  
...  

2020 ◽  
Vol 12 (12) ◽  
pp. 303-310
Author(s):  
Liangcheng Xu ◽  
Xin Song ◽  
Gwennyth Carroll ◽  
Lidan You

Abstract Osteocytes are the major mechanosensing cells in bone remodeling. Current in vitro bone mechanotransduction research use macroscale devices such as flow chambers; however, in vitro microfluidic devices provide an optimal tool to better understand this biological process with its flexible design, physiologically relevant dimensions and high-throughput capabilities. This project aims to design and fabricate a multi-shear stress, co-culture platform to study the interaction between osteocytes and other bone cells under varying flow conditions. Standard microfluidic design utilizing changing geometric parameters is used to induce different flow rates that are directly proportional to the levels of shear stress, with devices fabricated from standard polydimethylsiloxane (PDMS)-based softlithography processes. Each osteocyte channel (OCY) is connected to an adjacent osteoclast channel (OC) by 20-μm perfusion channels for cellular signaling molecule transport. Significant differences in RANKL levels are observed between channels with different shear stress levels, and we observed that pre-osteoclast differentiation was directly affected by adjacent flow-stimulated osteocytes. Significant decrease in the number of differentiating osteoclasts is observed in the OC channel adjacent to the 2-Pa shear stress OCY channel, while differentiation adjacent to the 0.5-Pa shear stress OCY channel is unaffected compared with no-flow controls. Addition of zoledronic acid showed a significant decrease in osteoclast differentiation, compounding to effect instigated by increasing fluid shear stress. Using this platform, we are able to mimic the interaction between osteocytes and osteoclasts in vitro under physiologically relevant bone interstitial fluid flow shear stress. Our novel microfluidic co-culture platform provides an optimal tool for bone cell mechanistic studies and provides a platform for the discovery of potential drug targets for clinical treatments of bone-related diseases.


Sign in / Sign up

Export Citation Format

Share Document