Tumor necrosis factor-α reduces argininosuccinate synthase expression and nitric oxide production in aortic endothelial cells

2007 ◽  
Vol 293 (2) ◽  
pp. H1115-H1121 ◽  
Author(s):  
Bonnie L. Goodwin ◽  
Laura C. Pendleton ◽  
Monique M. Levy ◽  
Larry P. Solomonson ◽  
Duane C. Eichler

Endothelial dysfunction associated with elevated serum levels of TNF-α observed in diabetes, obesity, and congenital heart disease results, in part, from the impaired production of endothelial nitric oxide (NO). Cellular NO production depends absolutely on the availability of arginine, substrate of endothelial nitric oxide synthase (eNOS). In this report, evidence is provided demonstrating that treatment with TNF-α (10 ng/ml) suppresses not only eNOS expression but also the availability of arginine via the coordinate suppression of argininosuccinate synthase (AS) expression in aortic endothelial cells. Western blot and real-time RT-PCR demonstrated a significant and dose-dependent reduction of AS protein and mRNA when treated with TNF-α with a corresponding decrease in NO production. Reporter gene analysis demonstrated that TNF-α suppresses the AS proximal promoter, and EMSA analysis showed reduced binding to three essential Sp1 elements. Inhibitor studies suggested that the repression of AS expression by TNF-α may be mediated, in part, via the NF-κB signaling pathway. These findings demonstrate that TNF-α coordinately downregulates eNOS and AS expression, resulting in a severely impaired citrulline-NO cycle. The downregulation of AS by TNF-α is an added insult to endothelial function because of its important role in NO production and in endothelial viability.

2001 ◽  
Vol 280 (5) ◽  
pp. C1057-C1065 ◽  
Author(s):  
Francis Kim ◽  
Byron Gallis ◽  
Marshall A. Corson

Endothelial cells release nitric oxide (NO) acutely in response to increased “flow” or fluid shear stress (FSS), and the increase in NO production is correlated with enhanced phosphorylation and activation of endothelial nitric oxide synthase (eNOS). Both vascular endothelial growth factor and FSS activate endothelial protein kinase B (PKB) by way of incompletely understood pathway(s), and, in turn, PKB phosphorylates eNOS at Ser-1179, causing its activation. In this study, we found that either FSS or insulin stimulated insulin receptor substrate-1 (IRS-1) tyrosine and serine phosphorylation and increased IRS-1-associated phosphatidylinositol 3-kinase activity, phosphorylation of PKB Ser-473, phosphorylation of eNOS Ser-1179, and NO production. Brief pretreatment of bovine aortic endothelial cells with tumor necrosis factor-α (TNF-α) inhibited the above described FSS- or insulin-stimulated protein phosphorylation events and almost totally inhibited FSS- or insulin-stimulated NO production. These data indicate that FSS and insulin regulate eNOS phosphorylation and NO production by overlapping mechanisms. This study suggests one potential mechanism for the development of endothelial dysfunction in disease states with alterations in insulin regulation and increased TNF-α levels.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7480
Author(s):  
Gabriele Serreli ◽  
Melanie Le Sayec ◽  
Camilla Diotallevi ◽  
Alice Teissier ◽  
Monica Deiana ◽  
...  

Nitric oxide (NO) is an important signaling molecule involved in many pathophysiological processes. NO mediates vasodilation and blood flow in the arteries, and its action contributes to maintaining vascular homeostasis by inhibiting vascular smooth muscle contraction and growth, platelet aggregation, and leukocyte adhesion to the endothelium. Dietary antioxidants and their metabolites have been found to be directly and/or indirectly involved in the modulation of the intracellular signals that lead to the production of NO. The purpose of this study was to investigate the contribution of conjugated metabolites of hydroxytyrosol (HT) and tyrosol (TYR) to the release of NO at the vascular level, and the related mechanism of action, in comparison to their parental forms. Experiments were performed in human aortic endothelial cells (HAEC) to evaluate the superoxide production, the release of NO and production of cyclic guanosine monophosphate (cGMP), the activation of serine/threonine-protein kinase 1 (Akt1), and the activation state of endothelial nitric oxide synthase (eNOS). It was observed that the tested phenolic compounds enhanced NO and cGMP concentration, inhibiting its depletion caused by superoxide overproduction. Moreover, some of them enhanced the activation of Akt (TYR, HT metabolites) and eNOS (HT, HVA, TYR-S, HT-3S). Overall, the obtained data showed that these compounds promote NO production and availability, suggesting that HT and TYR conjugated metabolites may contribute to the effects of parental extra virgin olive oil (EVOO) phenolics in the prevention of cardiovascular diseases.


Endocrinology ◽  
2012 ◽  
Vol 153 (7) ◽  
pp. 3190-3198 ◽  
Author(s):  
Hongwei Si ◽  
Jie Yu ◽  
Hongling Jiang ◽  
Hazel Lum ◽  
Dongmin Liu

We previously reported that genistein, a phytoestrogen, up-regulates endothelial nitric oxide synthase (eNOS) and prevents hypertension in rats that are independent of estrogen signaling machinery. However, how genistein regulates eNOS expression is unknown. In the present study, we show that genistein enhanced eNOS expression and NO synthesis in primary human aortic endothelial cells. Inhibition of extracellular signal regulated kinase, phosphoinositol-3 kinase, or protein kinase C did not affect genistein-enhanced eNOS expression and NO synthesis. However, chemical inhibition of protein kinase A (PKA) or adenoviral transfer of the specific endogenous PKA inhibitor gene completely abolished PKA activity and genistein-stimulated eNOS expression and NO production. Accordingly, genistein induced PKA activity and subsequent phosphorylation of cAMP response element (CRE)-binding protein (CREB) at Ser133. Suppression of CREB by small interfering RNA transfection abolished genistein-enhanced eNOS expression and NO production. Consistently, deletion of the CRE site within human eNOS promoter eliminated genistein-stimulated eNOS promoter activity. These findings provide the first evidence to our knowledge that genistein may play a beneficial role in vascular function through targeting the PKA/CREB/eNOS/NO signaling pathway.


2008 ◽  
Vol 100 (09) ◽  
pp. 483-488 ◽  
Author(s):  
Chiwaka Kimura ◽  
Masahiro Oike

SummaryThrombin induces Ca2+ transients and subsequent nitric oxide (NO) production in vascular endothelial cells. Thrombin cleaves protease-activated receptors, resulting in activation of intracellular signals, but it is not clarified how the extracellular thrombin stays around the cells to exert its enzyme activities. This study aimed to investigate the possible involvement of heparin sulfate proteoglycan (HSPG) in the effects of thrombin on vascular endothelium. Heparinase III completely removed the polysaccharide chain of HSPG in bovine aortic endothelial cells (BAECs).Thrombin induced Ca2+ transients in control BAECs, but not in heparinase III-treated BAECs. In contrast, ATP induced Ca2+ transients both in control and heparinase III-treated BAECs. Thrombin that was pre-incubated with heparin also failed to induced Ca2+ transients in BAECs. Furthermore, thrombin-induced NO production, as assessed with DAF-2 flu-orescence, was suppressed in heparinase III-treated BAECs and by the pre-incubation of thrombin with heparin. ATP-induced NO production was, however, not affected in heparinase III-treated BAECs. These results indicate that it is essential for thrombin to bind to the polysaccharide chain of HSPG for inducing Ca2+ transients and NO production in BAECs.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3575
Author(s):  
Sujeong Jang ◽  
Seongsoo Lee ◽  
Heonyong Park

Cyclodextrins (CDs) are used as drug delivery agents. In this study, we examined whether CDs have an inflammatory effect on endothelial cells. First, we found that β-CD promoted cell proliferation in bovine aortic endothelial cells and elevated nitric oxide (NO) production through dephosphorylation of threonine-495 (T-495) in endothelial nitric oxide synthetase (eNOS). Dephosphorylation of T-495 is known to activate eNOS. Phosphorylation of T-495 was found to be catalyzed by protein kinase Cε (PKCε). We then found that β-CD inhibits binding of PKCε to diacylglycerol (DAG) via formation of a β-CD-DAG complex, indicating that β-CD inactivates PKCε. Furthermore, β-CD controls activation of PKCε by reducing the recruitment of PKCε into the plasma membrane. Finally, β-CD inhibits expression of intercellular and vascular cell adhesion molecule-1 by increasing NO via control of PKCε/eNOS and suppression of THP-1 cell adhesion to endothelial cells. These findings imply that β-CD plays an important role in anti-inflammatory processes.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Xu-Ping Wang ◽  
Zhen-Ying Cheng ◽  
Katrina L. Schmid

GABABreceptors regulate the intracellular Ca2+concentration ([Ca2+]i) in a number of cells (e.g., retina, airway epithelium and smooth muscle), but whether they are expressed in vascular endothelial cells and similarly regulate the [Ca2+]iis not known. The purpose of this study was to investigate the expression of GABABreceptors, a subclass of receptors to the inhibitory neurotransmitterγ-aminobutyric acid (GABA), in cultured human aortic endothelial cells (HAECs), and to explore if altering receptor activation modified [Ca2+]iand endothelial nitric oxide synthase (eNOS) translocation. Real-time PCR, western blots and immunofluorescence were used to determine the expression of GABAB1and GABAB2in cultured HAECs. The effects of GABABreceptors on [Ca2+]iin cultured HAECs were demonstrated using fluo-3. The influence of GABABreceptors on eNOS translocation was assessed by immunocytochemistry. Both GABAB1and GABAB2mRNA and protein were expressed in cultured HAECs, and the GABAB1and GABAB2proteins were colocated in the cell membrane and cytoplasm. One hundredμM baclofen caused a transient increase of [Ca2+]iand eNOS translocation in cultured HAECs, and the effects were attenuated by pretreatment with the selective GABABreceptor antagonists CGP46381 and CGP55845. GABABreceptors are expressed in HAECs and regulate the [Ca2+]iand eNOS translocation. Cultures of HAECs may be a usefulin vitromodel for the study of GABABreceptors and vascular biology.


2010 ◽  
Vol 298 (1) ◽  
pp. H112-H118 ◽  
Author(s):  
Jin Qian ◽  
Qian Zhang ◽  
Jarrod E. Church ◽  
David W. Stepp ◽  
Radu D. Rudic ◽  
...  

Nitric oxide (NO), synthesized by endothelial nitric oxide synthase (eNOS), exerts control over vascular function via two distinct mechanisms, the activation of soluble guanylate cyclase (sGC)/cGMP-dependent signaling or through S-nitrosylation of proteins with reactive thiols ( S-nitrosylation). Previous studies in cultured endothelial cells revealed that eNOS targeted to the plasma membrane (PM) releases greater amounts of NO compared with Golgi tethered eNOS. However, the significance of eNOS localization to sGC-dependent or -independent signaling is not known. Here we show that PM-targeted eNOS, when expressed in human aortic endothelial cells (HAEC) and isolated blood vessels, increases sGC/cGMP signaling to a greater extent than Golgi-localized eNOS. The ability of local NO production to influence sGC-independent mechanisms was also tested by monitoring the secretion of Von Willebrand factor (vWF), which is tonically inhibited by the S-nitrosylation of N-ethylmaleimide sensitive factor (NSF). In eNOS “knockdown” HAECs, vWF secretion was attenuated to a greater degree by PM eNOS compared with a Golgi-restricted eNOS. Moreover, the PM-targeted eNOS induced greater S-nitrosylation of NSF vs. Golgi eNOS. To distinguish between the amount of NO generated and the intracellular location of synthesis, we expressed Golgi and PM-targeted calcium-insensitive forms of eNOS in HAEC. These constructs, which generate equal amounts of NO regardless of location, produced equivalent increases in cGMP in bioassays and equal inhibition of vWF secretion. We conclude that the greater functional effects of PM eNOS are due to the increased amount of NO produced rather than effects derived from the local synthesis of NO.


Sign in / Sign up

Export Citation Format

Share Document