Shunting of microspheres across the canine coronary circulation

1979 ◽  
Vol 236 (1) ◽  
pp. H7-H12 ◽  
Author(s):  
G. J. Crystal ◽  
R. B. Boatwright ◽  
H. F. Downey ◽  
F. A. Bashour

Coronary shunting of 9 +/-1 micrometer and 25 +/- 5 micrometer radiolabeled microspheres was examined in anesthetized, open-chest dogs, whose left common coronary arteries were perfused at controlled pressures. Shunting was estimated from the difference in radioactivity between perfusion line and coronary sinus blood samples during selective elevations of coronary perfusion pressure (CPP), left ventricular afterload, and inspired oxygen. A linear relationship was found between coronary shunting of 9-micrometer microspheres and CPP over the range 100-200 mmHg. According to regression analysis, percent shunt flow was 4.0% at control CPP (100 mmHg) and 10.0% at CPP of 200 mmHg. No shunting of 25-micrometer microspheres occurred at any CPP. Raising afterload did not affect shunting at control CPP but attenuated the increase in shunting at elevated CPP. Changing inspired gas from room air to 100% oxygen did not influence shunting at control or elevated CPP. Raising CPP to 150 and 200 mmHg also released 2.5% and 5.9% of pretrapped 9-micrometer microspheres, respectively. This study demonstrates that vessels permitting passage of microspheres across coronary circulation are sensitive to elevated perfusion pressure.

1992 ◽  
Vol 262 (1) ◽  
pp. H68-H77
Author(s):  
F. L. Abel ◽  
R. R. Zhao ◽  
R. F. Bond

Effects of ventricular compression on maximally dilated left circumflex coronary blood flow were investigated in seven mongrel dogs under pentobarbital anesthesia. The left circumflex artery was perfused with the animals' own blood at a constant pressure (63 mmHg) while left ventricular pressure was experimentally altered. Adenosine was infused to produce maximal vasodilation, verified by the hyperemic response to coronary occlusion. Alterations of peak left ventricular pressure from 50 to 250 mmHg resulted in a linear decrease in total circumflex flow of 1.10 ml.min-1 x 100 g heart wt-1 for each 10 mmHg of peak ventricular to coronary perfusion pressure gradient; a 2.6% decrease from control levels. Similar slopes were obtained for systolic and diastolic flows as for total mean flow, implying equal compressive forces in systole as in diastole. Increases in left ventricular end-diastolic pressure accounted for 29% of the flow changes associated with an increase in peak ventricular pressure. Doubling circumferential wall tension had a minimal effect on total circumflex flow. When the slopes were extrapolated to zero, assuming linearity, a peak left ventricular pressure of 385 mmHg greater than coronary perfusion pressure would be required to reduce coronary flow to zero. The experiments were repeated in five additional animals but at different perfusion pressures from 40 to 160 mmHg. Higher perfusion pressures gave similar results but with even less effect of ventricular pressure on coronary flow or coronary conductance. These results argue for an active storage site for systolic arterial flow in the dilated coronary system.


2021 ◽  
Vol 5 (3) ◽  
Author(s):  
Filippo Zilio ◽  
Simone Muraglia ◽  
Roberto Bonmassari

Abstract Background A ‘catecholamine storm’ in a case of pheochromocytoma can lead to a transient left ventricular dysfunction similar to Takotsubo cardiomyopathy. A cardiogenic shock can thus develop, with high left ventricular end-diastolic pressure and a reduction in coronary perfusion pressure. This scenario can ultimately lead to a cardiac arrest, in which unloading the left ventricle with a peripheral left ventricular assist device (Impella®) could help in achieving the return of spontaneous circulation (ROSC). Case summary A patient affected by Takotsubo cardiomyopathy caused by a pheochromocytoma presented with cardiogenic shock that finally evolved into refractory cardiac arrest. Cardiopulmonary resuscitation was performed but ROSC was achieved only after Impella® placement. Discussion In the clinical scenario of Takotsubo cardiomyopathy due to pheochromocytoma, when cardiogenic shock develops treatment is difficult because exogenous catecholamines, required to maintain organ perfusion, could exacerbate hypertension and deteriorate the cardiomyopathy. Moreover, as the coronary perfusion pressure is critically reduced, refractory cardiac arrest could develop. Although veno-arterial extra-corporeal membrane oxygenation (va-ECMO) has been advocated as the treatment of choice for in-hospital refractory cardiac arrest, in the presence of left ventricular overload a device like Impella®, which carries fewer complications as compared to ECMO, could be effective in obtaining the ROSC by unloading the left ventricle.


1994 ◽  
Vol 266 (3) ◽  
pp. H1233-H1241 ◽  
Author(s):  
L. S. Mihailescu ◽  
F. L. Abel

This study presents an improved method for the measurement of intramyocardial pressure (IMP) using the servo-nulling mechanism. Glass micropipettes (20-24 microns OD) were used as transducers, coated to increase their mechanical resistance to breakage, and placed inside the left ventricular wall with a micropipette holder and manipulator. IMP was measured at the base of the left ventricle in working and nonworking isolated cat hearts that were perfused with Krebs-Henseleit buffer. In working hearts a transmural gradient of systolic IMP oriented from endocardium toward the epicardium was found; the endocardial values for systolic IMP were slightly higher than systolic left ventricular pressure (LVP), by 11-18%. Increases in afterload induced increases in IMP, without changing the systolic IMP-to-LVP ratio. In nonworking hearts with drained left ventricles, the systolic transmural gradient for IMP described for working hearts persisted, but at lower values, and was directly dependent on coronary perfusion pressure. Systolic IMP-to-LVP ratios were always > 1. The diastolic IMP of both working and nonworking hearts exhibited irregular transmural gradients. Our results support the view that generated systolic IMP is largely independent of LVP development.


2001 ◽  
Vol 281 (5) ◽  
pp. H2191-H2197 ◽  
Author(s):  
Teruo Noguchi ◽  
Zengyi Chen ◽  
Stephen P. Bell ◽  
Lori Nyland ◽  
Martin M. LeWinter

The effect of protein kinase C (PKC) activation on cardiac mechanoenergetics is not fully understood. To address this issue, we determined the effects of the PKC activator phorbol 12-myristate 13-acetate (PMA) on isolated rat hearts. Hearts were exposed to PMA with or without pretreatment with the PKC inhibitor chelerythrine. Contractile efficiency was assessed as the reciprocal of the slope of the linear myocardial O2consumption (V˙o 2) pressure-volume area (PVA) relation. PMA decreased contractility ( E max; −30 ± 8%; P < 0.05) and increased coronary perfusion pressure (+58 ± 11%; P < 0.01) without altering left ventricular end-diastolic pressure. Concomitantly, PMA decreased PVA-independentV˙o 2 [nonmechanical energy expenditure for excitation-contraction (E-C) coupling and basal metabolism] by 28 ± 8% ( P < 0.05) and markedly increased contractile efficiency (+41 ± 8%; P < 0.05) in a manner independent of the coronary vascular resistance. Basal metabolism was not affected by PMA. Chelerythrine abolished the PMA-induced vasoconstriction, negative inotropy, decreased PVA-independent V˙o 2, and increased contractile efficiency. We conclude that PKC-mediated phosphorylation of regulatory proteins reduces V˙o 2 via effects on both the contractile machinery and the E-C coupling.


Author(s):  
Débora Tacon da Costa ◽  
Leticia Tinoco Gonçalves ◽  
Jéssyca Aparecida Soares Giesen ◽  
Roger Lyrio dos Santos

Although progesterone has the ability to promote dilation of vascular smooth muscle, its role in coronary circulation is still poorly characterized, especially in essential hypertension and in a model of endogenous deficiency of ovarian hormones. Thus, this study evaluated the effect of progesterone treatment on endothelium-dependent coronary vascular reactivity in hypertensive (SHR) and ovariectomized rats. Adult SHR aged 8 to 10 weeks were divided into: SHAM, Ovariectomized (OVX) and Ovariectomized + treatment with 2 mg/kg/day of progesterone for 15 days (OVX-P4). Coronary vascular reactivity was investigated using modified Langendorff method. After stabilization, baseline coronary perfusion pressure (CPP) was recorded and vascular reactivity to bradykinin (BK, 0.1-1000 ng) assessed before and after infusion, either individually or in combination, with Nω-nitro-L-arginine methyl ester (L-NAME), indomethacin or clotrimazole. Scanning electron microscopy was used for qualitative analysis of the endothelium. OVX and OVX-P4 groups had a higher baseline CPP compared to that of the SHAM group. BK was able to promote vasodilation in all groups. However, relaxation to BK was less pronounced in the OVX group when compared to SHAM, with architecture loss and areas of cell atrophy having been observed. Progesterone treatment prevented this injury. Perfusion with L-NAME induced greater damage to the SHAM group, while the use of indomethacin led to a significant reduction in the vasodilator response to BK in the OVX-P4 group. Taken together, our results show that progesterone modulates endothelium-dependent coronary vasodilation in SHR ovariectomized, preventing damage caused by ovarian hormonal deficiency through a mechanism that involves prostanoid pathway.


1997 ◽  
Vol 273 (2) ◽  
pp. H566-H572 ◽  
Author(s):  
M. Miyamae ◽  
S. A. Camacho ◽  
W. D. Rooney ◽  
G. Modin ◽  
H. Z. Zhou ◽  
...  

During mild graded ischemia in perfused rat hearts, we (V.M. Figueredo, R. Brandes, M. W. Weiner, B. M. Massie, and S. A. Camacho. J. Clin. Invest 90: 1794-1802, 1992) previously found a relationship between decreased left ventricular developed pressure (LVDP) and increased Pi, in which intracellular pH, cytosolic Ca2+ concentration ([Ca2+]i), ATP, and free-energy change of ATP hydrolysis were not altered enough to affect contractility. However, the contribution of decreased coronary perfusion pressure (CPP) to decreased LVDP could not be determined. Thus, in the present study, graded hypoxia in perfused rat hearts (95-37.5% O2) was used to increase Pi to similar levels produced during mild ischemia without altering CPP and minimizing changes of other potential mediators of contractile dysfunction. 31P-magnetic resonance spectroscopy and indo 1 fluorescence were used to assess energy metabolites and [Ca2+]i, respectively. The relationship between LVDP and Pi during graded hypoxia was fit to a monoexponential (LVDP = 105 x e-0.04Pi). These data were compared with the relationship of LVDP and Pi during mild ischemia (LVDP = 106 x e-0.08Pi) (V. M. Figueredo, R. Brandes, M. W. Weiner, B. M. Massie, and S. A. Camacho. J. Clin. Invest 90: 1794-1802, 1992). The exponential constant, which describes the effect of Pi on LVDP, was 50% lower during graded hypoxia relative to mild ischemia. This suggests that another mediator, which accounted for approximately 50% of the decrease of LVDP during mild ischemia, was not present during hypoxia. Because CPP decreased during ischemia but not hypoxia, these data suggest that CPP and Pi contribute similarly in mediating contractile dysfunction during mild ischemia.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Tao Yu ◽  
Giuseppe Ritagno ◽  
Jun H Cho ◽  
Shijie Sun ◽  
Max H Weil ◽  
...  

We have previously reported, on the basis of experimental studies, that interruptions of CPR as little as 10 seconds adversely affect the outcomes of CPR. We therefore investigated interruptions of only 5 seconds for delivering ventilation, which corresponds to the current AHA algorithm in which of 30 compressions followed by 2 ventilations are mandated. We hypothesized that even 5 seconds interruption significantly reduces CPP and with significant delay prior to restoring pre-interruption levels. Ventricular fibrillation (VF) was induced and untreated for 15 minutes in 33 male domestic pigs weighting 40±3 Kg. Chest compressions delivered with the aid of mechanical compressor (Thumper, 1000, MI Instruments) with a rate of 100/min. Ventilations were administrated with a compression / ventilation ratio of 30:2 such that 2 ventilations were delivered over a 5 seconds interval. CPP was continuously measured as the difference between comparison diastolic and simultaneous left atrial pressure. CPP significantly decreased during interruptions for ventilation from 20.5±12.8 mmHg to 9.8±6.7 mmHg( P <0.001). After chest compressions were restarted, the CPP increased to 12.5±7.6 mmHg after first compression( P <0.001). A total of 12±7 compressions over a mean interval of 7.2±4.3 seconds was required prior to restoration of CPP to levels corresponding to those that preceded the interruption. As little as the five seconds of interruption in chest compression currently mandated for 30 to 2 ventilations during CPR significantly reduced CPP and delayed restoration of CPP to its pre-interruption level.


1959 ◽  
Vol 14 (5) ◽  
pp. 817-822 ◽  
Author(s):  
C. R. Rayford ◽  
E. M. Khouri ◽  
F. B. Lewis ◽  
D. E. Gregg

Experiments reported here show that the coronary sinus blood is derived almost entirely from the left coronary artery inflow and is not significantly contaminated with blood from other myocardial territories. The special cannula used for cannulating the coronary sinus permits drainage of all veins which empty into the coronary sinus. In consequence, the percentage of left coronary artery inflow recovered in the coronary sinus is high (usually 80–90%) and reasonably constant during changes in coronary perfusion pressure, aortic constriction, administration of epinephrine or norepinephrine, hemorrhage and reinfusion, induced ventricular fibrillation, and pulmonary artery constriction. The use of the arteriovenous oxygen difference between the arterial and coronary sinus blood in combination with left coronary artery inflow as a precise measure of left ventricular metabolism is validated under these experimental conditions. Submitted on January 29, 1959


1985 ◽  
Vol 249 (6) ◽  
pp. H1070-H1077 ◽  
Author(s):  
I. Y. Liang ◽  
C. E. Jones

Coronary hypoperfusion was elicited in alpha-chloralose-anesthetized open-chest dogs by reducing left coronary perfusion pressure to 50 mmHg. Left coronary blood flow, as well as left ventricular oxygen extraction, oxygen consumption, and contractile force were measured. The reduction in perfusion pressure caused significant reductions in coronary flow, oxygen consumption, and peak reactive hyperemic flow. During hypoperfusion in 11 dogs, intracoronary infusion of the specific alpha 1-adrenergic antagonist prazosin (0.1 mg/min) increased coronary flow and oxygen consumption by 22 and 16%, respectively. Peak increases were observed after 6–8 min of prazosin infusion (0.6–0.8 mg prazosin), and both increases were statistically significant (P less than 0.05). In seven additional dogs, beta-adrenergic blockade with propranolol (1.0 mg ic) did not significantly affect the actions of prazosin. In five additional dogs, the specific alpha 2-adrenergic antagonist yohimbine (1.3 mg ic) in the presence of propranolol (1.0 mg ic) did not affect coronary flow or oxygen consumption during coronary hypoperfusion. Those results suggest that an alpha 1- but not an alpha 2-adrenergic constrictor tone was operative in the left coronary circulation under the conditions of these experiments.


Sign in / Sign up

Export Citation Format

Share Document