Cardiac gap junction channel activity in embryonic chick ventricle cells

1988 ◽  
Vol 254 (1) ◽  
pp. H170-H180 ◽  
Author(s):  
R. D. Veenstra ◽  
R. L. DeHaan

We have recorded single-gap junction-channel currents from pairs of 7-day chick embryo ventricle cells, using the double whole cell patch-clamp technique. Junctional conductance (Gj) was variable from one preparation to the next, ranging from 0.15 to 35.0 nS. Single-channel conductance (gamma j) of the main junctional channel was 166 +/- 51 pS and was independent of Gj; a second conductance level of 60–80 pS was also seen in favorable records. The transition time from the closed to the open state was 285 +/- 153 microseconds, with some slow transitions lasting 1–5 ms. Channels opened and closed stochastically; Gj could be defined by the product of the number of active channels in the junction (N), the mean open-state probability (Po) of the channels, and gamma j. Channel activity was unaffected by cell membrane potential or by transjunctional potential. Po and Gj were reversibly reduced to low levels by 1-octanol or by elevated [Cai], whereas gamma j was unchanged by these agents. The 60–80 pS conductance mechanism was octanol- and Ca-resistant, but it is not clear whether this represents a subconductance level of the main channel or a separate class of smaller channels.

1991 ◽  
Vol 260 (3) ◽  
pp. C513-C527 ◽  
Author(s):  
D. C. Spray ◽  
M. Chanson ◽  
A. P. Moreno ◽  
R. Dermietzel ◽  
P. Meda

Gap junctions, dye coupling, and junctional conductance were studied in a cell line (WB) that is derived from rat liver and displays a phenotype similar to “oval” cells. In freeze-fracture replicas, two distinctive particle sizes were detected in gap junctional plaques. Immunocytochemical studies indicated punctate staining at membrane appositions using antibodies to connexin 43 and to a brain gap junction-associated antigen (34 kDa). No staining was observed using antibodies prepared against rat liver gap junction proteins (connexins 32 and 26). Pairs of WB cells were electrically and dye coupled. Junctional conductance (gj) between cell pairs averaged approximately 10 nS; occasionally, gj was low enough that unitary junctional conductances (gamma j) could be detected. Using a CsCl-containing electrode solution, distinctive gamma j values were recorded: approximately 20-30 pS, approximately 80-90 pS, and the sum of the other sizes. The largest gamma j events were apparently due to random coincident openings or closures of the smaller channels. Several treatments reduced gj. Frequency distributions of gamma j were unaltered by 2 mM halothane or 3.5 heptanol, but the sizes of intermediate and largest events were reduced slightly by 100 nM phorbol ester, and the relative frequency of the largest events was increased by 10 microM glutaraldehyde. We conclude that the distinctive gamma j values represent openings and closures of two distinct types of gap junction channels rather than substates of a single channel type; these unitary conductances may correspond to the dual immunoreactivity and to the two particle sizes seen in freeze fracture.


1997 ◽  
Vol 273 (4) ◽  
pp. C1386-C1396 ◽  
Author(s):  
P. R. Brink ◽  
K. Cronin ◽  
K. Banach ◽  
E. Peterson ◽  
E. M. Westphale ◽  
...  

Homomeric gap junction channels are composed solely of one connexin type, whereas heterotypic forms contain two homomeric hemichannels but the six identical connexins of each are different from each other. A heteromeric gap junction channel is one that contains different connexins within either or both hemichannels. The existence of heteromeric forms has been suggested, and many cell types are known to coexpress connexins. To determine if coexpressed connexins would form heteromers, we cotransfected rat connexin43 (rCx43) and human connexin37 (hCx37) into a cell line normally devoid of any connexin expression and used dual whole cell patch clamp to compare the observed gap junction channel activity with that seen in cells transfected only with rCx43 or hCx37. We also cocultured cells transfected with hCx37 or rCx43, in which one population was tagged with a fluorescent marker to monitor heterotypic channel activity. The cotransfected cells possessed channel types unlike the homotypic forms of rCx43 or hCx37 or the heterotypic forms. In addition, the noninstantaneous transjunctional conductance-transjunctional voltage ( G j/ V j) relationship for cotransfected cell pairs showed a large range of variability that was unlike that of the homotypic or heterotypic form. The heterotypic cell pairs displayed asymmetric voltage dependence. The results from the heteromeric cell pairs are inconsistent with summed behavior of two independent homotypic populations or mixed populations of homotypic and heterotypic channels types. The G j/ V jdata imply that the connexin-to-connexin interactions are significantly altered in cotransfected cell pairs relative to the homotypic and heterotypic forms. Heteromeric channels are a population of channels whose characteristics could well impact differently from their homotypic counterparts with regard to multicellular coordinated responses.


2001 ◽  
Vol 281 (4) ◽  
pp. H1675-H1689 ◽  
Author(s):  
Virginijus Valiunas ◽  
Joanna Gemel ◽  
Peter R. Brink ◽  
Eric C. Beyer

Many cardiovascular cells coexpress multiple connexins (Cx), leading to the potential formation of mixed (heteromeric) gap junction hemichannels whose biophysical properties may differ from homomeric channels containing only one connexin type. We examined the potential interaction of connexin Cx43 and Cx40 in HeLa cells sequentially stably transfected with these two connexins. Immunoblots verified the production of comparable amounts of both connexins, cross-linking showed that both connexins formed oligomers, and immunofluorescence showed extensive colocalization. Moreover, Cx40 copurified with (His)6-tagged Cx43 by affinity chromatography of detergent-solubilized connexons, demonstrating the presence of both connexins in some hemichannels. The dual whole cell patch-clamp method was used to compare the gating properties of gap junctions in HeLa Cx43/Cx40 cells with homotypic (Cx40-Cx40 and Cx43-Cx43) and heterotypic (Cx40-Cx43) gap junctions. Many of the observed single channel conductances resembled those of homotypic or heterotypic channels. The steady-state junctional conductance ( g j,ss) in coexpressing cell pairs showed a reduced sensitivity to the voltage between cells ( V j) compared with homotypic gap junctions and/or an asymmetrical V j dependence reminiscent of heterotypic gap junctions. These gating properties could be fit using a combination of homotypic and heterotypic channel properties. Thus, whereas our biochemical evidence suggests that Cx40 and Cx43 form heteromeric connexons, we conclude that they are functionally insignificant with regard to voltage-dependent gating.


2001 ◽  
Vol 281 (1) ◽  
pp. C75-C88 ◽  
Author(s):  
Hong-Zhan Wang ◽  
Nancy Day ◽  
Mira Valcic ◽  
Ken Hsieh ◽  
Scott Serels ◽  
...  

Intercellular communication through gap junction channels plays a fundamental role in regulating vascular myocyte tone. We investigated gap junction channel expression and activity in myocytes from the physiologically distinct vasculature of the human internal mammary artery (IMA, conduit vessel) and saphenous vein (SV, capacitance vessel). Northern and Western blots documented the presence of connexin43 (Cx43) in frozen tissues and cultured cells from both vessels. Northern blots also confirmed the presence of Cx40 mRNA in cultured IMA and SV myocytes. Dual whole cell patch-clamp experiments revealed that macroscopic junctional conductance was voltage dependent and characteristic of that observed for Cx43. In the majority of records, in both vessels, single-channel activity was dominated by a main-state conductance of 120 pS, with subconducting events comprising less than 10% of the amplitude histograms. However, some records showed “atypical” unitary events that had a conductance similar to Cx40 (∼140–160 pS), but gating behavior like that of Cx43. As such, it is conceivable that the presence and coexpression of Cx40 and Cx43 in IMA and SV myocytes may result in heteromeric channel formation. Nonetheless, in terms of gating, Cx43-like behavior clearly dominates.


1990 ◽  
Vol 111 (2) ◽  
pp. 589-598 ◽  
Author(s):  
G I Fishman ◽  
D C Spray ◽  
L A Leinwand

Gap junctions permit the passage of ions and chemical mediators from cell to cell. To identify the molecular genetic basis for this coupling in the human heart, we have isolated clones from a human fetal cardiac cDNA library which encode the full-length human cardiac gap junction (HCGJ) mRNA. The predicted amino acid sequence is homologous to the rat cardiac gap junction protein, connexin43 (Beyer, E. D., D. Paul, and D. A. Goodenough. 1987. J. Cell Biol. 105:2621-2629), differing by 9 of 382 amino acids. HCGJ mRNA is detected as early as fetal week 15 and persists in adult human cardiac samples. Genomic DNA analysis suggests the presence of two highly homologous HCGJ loci, only one of which is functional. Stable transfection of the HCGJ cDNA into SKHep1 cells, a human hepatoma line which is communication deficient, leads to the formation of functional channels. Junctional conductance in pairs of transfectants containing 10 copies of the HCGJ sequence is high (approximately 20 nS). Single channel currents are detectable in this expression system and correspond to conductances of approximately 60 pS. These first measurements of the HCGJ channel are similar to the junctional conductance recorded between pairs of rat or guinea pig cardiocytes.


2003 ◽  
Vol 2 (1) ◽  
pp. 181-190 ◽  
Author(s):  
Stephen K. Roberts

ABSTRACT In contrast to animal and plant cells, very little is known of ion channel function in fungal physiology. The life cycle of most fungi depends on the “filamentous” polarized growth of hyphal cells; however, no ion channels have been cloned from filamentous fungi and comparatively few preliminary recordings of ion channel activity have been made. In an attempt to gain an insight into the role of ion channels in fungal hyphal physiology, a homolog of the yeast K+ channel (ScTOK1) was cloned from the filamentous fungus, Neurospora crassa. The patch clamp technique was used to investigate the biophysical properties of the N. crassa K+ channel (NcTOKA) after heterologous expression of NcTOKA in yeast. NcTOKA mediated mainly time-dependent outward whole-cell currents, and the reversal potential of these currents indicated that it conducted K+ efflux. NcTOKA channel gating was sensitive to extracellular K+ such that channel activation was dependent on the reversal potential for K+. However, expression of NcTOKA was able to overcome the K+ auxotrophy of a yeast mutant missing the K+ uptake transporters TRK1 and TRK2, suggesting that NcTOKA also mediated K+ influx. Consistent with this, close inspection of NcTOKA-mediated currents revealed small inward K+ currents at potentials negative of EK. NcTOKA single-channel activity was characterized by rapid flickering between the open and closed states with a unitary conductance of 16 pS. NcTOKA was effectively blocked by extracellular Ca2+, verapamil, quinine, and TEA+ but was insensitive to Cs+, 4-aminopyridine, and glibenclamide. The physiological significance of NcTOKA is discussed in the context of its biophysical properties.


1992 ◽  
Vol 68 (1) ◽  
pp. 85-92 ◽  
Author(s):  
M. Mynlieff ◽  
K. G. Beam

1. Calcium channel currents were measured with the whole-cell patch clamp technique in cultured, identified mouse motoneurons. Three components of current were operationally defined on the basis of voltage dependence, kinetics, and pharmacology. 2. Test potentials to -50 mV or greater (10 mM external Ca2+) elicited a low-voltage activated T-type current that was transient (decaying to baseline in less than 200 ms) and had a relatively slow time to peak (20-50 ms). A 1-s prepulse to -45 mV produced approximately half-maximal inactivation of this T current. 3. Two high-voltage activated (HVA) components of current (1 transient and 1 sustained) were activated by test potentials to -20 mV or greater (10 mM external Ca2+). A 1-s prepulse to -35 mV produced approximately half-maximal inactivation of the transient component without affecting the sustained component. 4. When Ba2+ was substituted for Ca2+ as the charge carrier, activation of the HVA components was shifted in the hyperpolarizing direction, and the relative amplitude of the transient HVA component was reduced. 5. Amiloride (1-2 mM) caused a reversible, partial block of the T current without affecting the HVA components. 6. The dihydropyridine agonist isopropyl 4-(2,1,3-benzoxadiazol-4-yl)-1,4-dihydro-2,6-dimethyl-5-nitro-3- pyridine-carboxylate [(+)-SDZ 202-791, 100 nM-1 microM)] shifted the activation of the sustained component of HVA current to more negative potentials and increased its maximal amplitude. Additionally, (+)-SDZ 202-791 caused the appearance of a slowed component of tail current.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 177 (1) ◽  
pp. 201-221 ◽  
Author(s):  
H. A. Pearson ◽  
G. Lees ◽  
D. Wray

1. Using the patch-clamp technique, Ca2+ channel currents were recorded from neurones freshly isolated from the thoracic ganglia of the desert locust Schistocerca gregaria. 2. In solutions containing 10 mmol l-1 Ba2+ we observed high-voltage-activated whole-cell inward currents with sustained and transient components, both of which had similar steady-state inactivation properties. 3. Substitution of Ca2+ for Ba2+ was found to reduce whole-cell currents, whereas removal of monovalent cations had no effect. 4. Cd2+ (1 mmol l-1) completely blocked the whole-cell current, but at 10 micromolar preferentially inhibited the sustained component without affecting the transient component. 5. Verapamil (1 micromolar) inhibited both current components but appeared to be more selective for the sustained component, whereas nitrendipine (1 micromolar) had no effect on either component. 6. A single-channel recording suggested that the transient component was carried by a low- conductance channel. 7. Certain compounds with insecticidal action (ryanodine, S-bioallethrin, deltamethrin and avermectin) did not affect calcium channel currents in these cells. 8. These data suggest that there are two types of Ca2+ channels present in locust neurones. These channel types have properties differing from the T-, L- and N-type channels found in vertebrates and, furthermore, were not targets for the insecticides we tested.


1993 ◽  
Vol 265 (1) ◽  
pp. C72-C78 ◽  
Author(s):  
H. Sunose ◽  
K. Ikeda ◽  
Y. Saito ◽  
A. Nishiyama ◽  
T. Takasaka

Single-channel currents of the luminal membrane of marginal cells dissected from the guinea pig cochlea were investigated using the patch-clamp technique. Nonselective cation channels having a linear conductance of 27 pS were activated by depolarization, cytoplasmic Ca2+, and cytoplasmic acidification. Cytoplasmic ATP inactivated the channel. A mixture of 3-isobutyl-1-methylxanthine and forskolin activated a small-conductance Cl channel in the cell-attached mode. On excision in the inside-out mode, the Cl channel was inactivated, but it was reactivated by a cytoplasmic catalytic subunit of protein kinase A with ATP. This Cl channel had a linear conductance of 12 pS, and its activity was little affected by voltage. The sequence of permeation by anions was Br- > Cl > I-. The Cl channel blocker diphenylamine-2-carboxylic acid (3 mM) completely blocked the channel, but 5-nitro-2-(3-phenylpropylamino)-benzoic acid (50 microM) blocked it only partially. The above-mentioned characteristics are similar to those of the well-demonstrated Cl- channel, cystic fibrosis transmembrane regulator.


Sign in / Sign up

Export Citation Format

Share Document