Naloxone alters organ perfusion during endotoxin shock in conscious rats

1988 ◽  
Vol 255 (5) ◽  
pp. H1106-H1113 ◽  
Author(s):  
W. R. Law ◽  
J. L. Ferguson

Antagonism of endogenous opioids has been shown to improve survival time, increase blood pressure, and attenuate acidosis during endotoxin shock. However, some of the most severe problems associated with this condition arise from the circulatory disturbances that occur. We investigated the circulatory effects of naloxone during endotoxin shock as they relate to hemodynamic parameters in conscious, unrestrained rats. Blood flow and hemodynamic variables were measured in male, Sprague-Dawley rats (300-400 g) 24 h after surgical preparation. Rats were challenged with either 10 mg/kg Escherichia coli endotoxin (100% lethal dose) or intravenous saline. Measurements were made at 0, 10, 30, and 60 min postchallenge. Naloxone (2 mg/kg) or saline was given as a treatment (intravenous bolus) at 25 min postchallenge. Cardiac output and blood distribution (%CO) and flow were measured with radiolabeled microspheres. Cardiac output was depressed and total peripheral resistance was elevated 10 min into endotoxin shock. Naloxone treatment improved blood pressure significantly during endotoxin shock, as would be expected with the observed increase in total peripheral vascular resistance and no significant change in cardiac output. Improved perfusion of skeletal muscle is a likely explanation for lower serum lactate levels that have been reported to occur in this model after naloxone administration. Our data also indicate that naloxone may improve cardiac efficiency and does not interfere with maintenance of global cerebral blood flow. Collectively, these effects would contribute to the observed improved survival time after naloxone treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

1981 ◽  
Vol 59 (2) ◽  
pp. 204-208 ◽  
Author(s):  
R. Keeler ◽  
Anamaria Barrientos ◽  
K. Lee

A study was made of the effects of acute (4 h) or chronic (4 days) infusion of Escherichia coli endotoxin on cardiovascular function in rats. Rats with acute endotoxemia had a reduced cardiac output but maintained their arterial blood pressure. Fractional distribution of the cardiac output was increased to the liver and reduced to the gastrointestinal tract and skin. No changes in fractional distribution to the kidneys, lungs, or heart were observed although absolute blood flow to these areas was reduced.Rats with chronic endotoxemia had a reduced cardiac output and hypotension with no change in peripheral resistance. Other changes resembled those seen in acute endotoxemia apart from a low renal fraction of the cardiac output. Calculation and interpretation of blood flow changes in these animals was difficult because of a large fall in hematocrit and changes in organ weight.


Author(s):  
Hans T. Versmold

Systemic blood pressure (BP) is the product of cardiac output and total peripheral resistance. Cardiac output is controlled by the heart rate, myocardial contractility, preload, and afterload. Vascular resistance (vascular hindrance × viscosity) is under local autoregulation and general neurohumoral control through sympathetic adrenergic innervation and circulating catecholamines. Sympathetic innovation predominates in organs receivingflowin excess of their metabolic demands (skin, splanchnic organs, kidney), while innervation is poor and autoregulation predominates in the brain and heart. The distribution of blood flow depends on the relative resistances of the organ circulations. During stress (hypoxia, low cardiac output), a raise in adrenergic tone and in circulating catecholamines leads to preferential vasoconstriction in highly innervated organs, so that blood flow is directed to the brain and heart. Catecholamines also control the levels of the vasoconstrictors renin, angiotensin II, and vasopressin. These general principles also apply to the neonate.


1981 ◽  
Vol 61 (6) ◽  
pp. 663-670 ◽  
Author(s):  
W. P. Anderson ◽  
P. I. Korner ◽  
J. A. Angus ◽  
C. I. Johnston

1. Mild, moderate and severe renal artery stenosis was induced in uninephrectomized conscious dogs by inflating a renal artery cuff to lower distal pressure to 60, 40 or 20 mmHg respectively. The renal artery was narrowed progressively over the next 3 days by further inflation of the cuff to relower the distal renal artery pressure to the initial values. 2. Graded progressive stenosis produced graded progressive rises in blood pressure, plasma renin activity and total renal resistance to flow over the 3 day period, followed by a return to control values 24 h after cuff deflation. 3. The rise in total renal resistance to flow was almost entirely due to the stenosis, with only small changes occurring in renal vascular resistance. 4. in moderate and severe stenosis cardiac output did not alter significantly and thus increases in blood pressure were due to increases in total peripheral resistance. in these groups the resistance to blood flow of the stenosis accounted respectively for about 36 and 26% of the rises in total peripheral resistance. Vasoconstriction of the other non-renal vascular beds accounted for the remainder of the increase in total peripheral resistance. 5. in mild stenosis the changes in both cardiac output and total peripheral resistance were variable and not statistically significant. in this group the rise in stenosis resistance was compensated by vasodilatation of the non-renal vascular beds. 6. in all groups rises in plasma renin activity and blood pressure correlated with the haemodynamic severity of the stenosis. 7. Thus the resistance to blood flow of the moderate and severe renal artery stenoses accounted for one-quarter to one-third of the increases in total peripheral resistance. The remainder of the increase in total peripheral resistance was due to vasoconstriction of nonrenal beds.


1975 ◽  
Vol 228 (3) ◽  
pp. 733-737 ◽  
Author(s):  
YC Lin ◽  
DG Baker

The diving response was produced by submerging the head of the unanesthetized rat for 60 s, while it was confined in a mesh-wired cone. Heart rate and cardiac output decreased by 73% and 74% from the predive values, respectively, indicating insignificant change in stroke volume. Central systemic arterial blood pressure rose by 22% during diving and a fourfold increase in total peripheral resistance was observed. Blood flow to the coronary, cerebral, and bronchial circulations remained unchanged while a 95% reduction in the intestine and the spleen, a 97% reduction in the kidney, and greater than 99% reduction in the tail and skin were observed during diving. The blood flow reduction from predive values ranged from 50% for liver and skeletal muscle to 75% for the adrenals and 65% for the diaphragm. The redistribution of the drastically reduced cardiac output during head immersion in the rat is similar to that reported for diving mammals. It is suggested that the rat may serve as a useful cardiovascular model for further studies of the diving response in mammals.


1979 ◽  
Vol 57 (5) ◽  
pp. 995-1002 ◽  
Author(s):  
David R. Jones ◽  
Robert M. Bryan Jr. ◽  
Nigel H. West ◽  
Raymond H. Lord ◽  
Brenda Clark

The regional distribution of blood flow, both before and during forced diving, was studied in the duck using radioactively labelled microspheres. Cardiac output fell from 227 ± 30 to 95 ± 16 mL kg−1 min−1 after 20–72 s of submergence and to 59 ± 18 mL kg−1 min−1 after 144–250 s of submergence. Mean arterial blood pressure did not change significantly as total peripheral resistance increased by four times during prolonged diving. Before diving the highest proportion of cardiac output went to the heart (2.6 ± 0.5%, n = 9) and kidneys (2.7 ± 0.5%, n = 9), with the brain receiving less than 1%. The share of cardiac output going to the brain and heart increased spectacularly during prolonged dives to 10.5 ± 3% (n = 5) and 15.9 ± 3.8% (n = 5), respectively, while that to the kidney fell to 0.4 ± 0.26% (n = 3). Since cardiac output declined during diving, tissue blood flow (millilitres per gram per minute) to the heart was unchanged although in the case of the brain it increased 2.35 times after 20–75 s of submergence and 8.5 times after 140–250 s of submergence. Spleen blood flow, the highest of any tissue predive (5.6 ± 1.3 mL g−1 min−1, n = 4), was insignificant during diving while adrenal flow increased markedly, in one animal reaching 7.09 mL g−1 min−1. The present results amplify general conclusions from previous research on regional distribution of blood flow in diving homeotherms, showing that, although both heart and brain receive a significant increase in the proportionate share of cardiac output during diving only the brain receives a significant increase in tissue blood flow, which increases as submergence is prolonged.


1983 ◽  
Vol 65 (6) ◽  
pp. 599-604 ◽  
Author(s):  
P. Tfelt-Hansen ◽  
I.-L. Kanstrup ◽  
N. J. Christensen ◽  
K. Winkler

1. The effect of intravenous ergotamine on general (blood pressure and cardiac output) and regional (splanchnic, renal and muscular) haemodynamics was studied immediately and 3 h after administration in seven male volunteers. Also plasma catecholamines were determined. 2. An increase in blood pressure with a peak just after administration was observed. The cardiac output was unchanged and the pressor effect of ergotamine was due to an increase in total peripheral resistance. 3. Plasma noradrenaline decreased 65% at the peak of the pressor effect whereas plasma adrenaline was unchanged. 4. Hepatic blood flow decreased 34% just after ergotamine administration and was normal after 3 h. Renal blood flow decreased by 29 and 19%. Calf blood flow was unchanged. These results suggest that different vascular beds in man react differently to ergotamine.


1993 ◽  
Vol 265 (6) ◽  
pp. R1276-R1283 ◽  
Author(s):  
D. H. Sigmon ◽  
W. H. Beierwaltes

Nitric oxide (NO) contributes to the regulation of regional blood flow. Inhibition of NO synthesis increases blood pressure and vascular resistance. Using radioactive microspheres and the substrate antagonist N omega-nitro-L-arginine methyl ester (L-NAME) (10 mg/kg) to block NO synthesis, we tested the hypothesis that there is a significant interaction between the vasodilator NO and the vasoconstrictor angiotensin II, which regulates regional hemodynamics. Further, we investigated the influence of anesthesia on this interaction. L-NAME increased blood pressure, decreased cardiac output, and increased total peripheral resistance in both anesthetized and conscious rats. In anesthetized rats, L-NAME decreased blood flow to visceral organs (i.e. kidney, intestine, and lung) but had little effect on blood flow to the brain, heart, or hindlimb. Treating anesthetized rats with the angiotensin II receptor antagonist losartan (10 mg/kg) attenuated the decrease in cardiac output and the increase in total peripheral resistance without affecting the pressor response to L-NAME. Losartan also attenuated the visceral hemodynamic responses to L-NAME. In conscious rats, L-NAME decreased blood flow to all organ beds. Treating these rats with losartan only marginally attenuated the increase in total peripheral resistance to L-NAME without significantly affecting the pressor response or the decrease in cardiac output. Losartan had no effect on the regional hemodynamic responses to L-NAME. These data suggest that NO-mediated vascular relaxation is an important regulator of total peripheral and organ vascular resistance. (ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 257 (2) ◽  
pp. H540-H552 ◽  
Author(s):  
S. E. Spencer ◽  
W. B. Sawyer ◽  
A. D. Loewy

L-Glutamate microinjections into the tuberal region of the lateral hypothalamic area (LHAt) caused a fall in blood pressure and heart rate in pentobarbital-anesthetized rats. The bradycardia was mediated by both beta-adrenergic and muscarinic mechanisms as demonstrated with pharmacological blockade. The hypotension was due to a decrease in cardiac output, not a decrease in total peripheral resistance. In addition, there was a reduction in coronary blood flow. If heart rate was held constant by pharmacological blockade or by electrical cardiac pacing, L-glutamate stimulation of the LHAt still caused a fall in blood pressure. When the electrically paced model was used, this hypotension was due to a fall in cardiac output. In contrast, with the pharmacological blockade of the heart, the hypotension was due to a decrease in the total peripheral resistance. The cardiac output reduction in the paced condition was not mediated solely by either beta-sympathetic or parasympathetic mechanisms as determined by pharmacological blockade. With heart rate held constant by either drugs or pacing, LHAt stimulation did not alter regional blood flow or resistance in any vascular bed, including the coronary circulation. We conclude that L-glutamate stimulation of the LHAt lowers the cardiac output and heart rate by both parasympathetic and beta-adrenergic mechanisms and elicits hypotension by lowering cardiac output in the naive and electrically paced model.


1964 ◽  
Vol 207 (6) ◽  
pp. 1349-1353 ◽  
Author(s):  
G. C. Whittow ◽  
P. D. Sturkie ◽  
G. Stein

The effect of hyperthermia on the respiratory rate, cardiac output, blood pressure, arterial hematocrit, and the skin temperatures of the extremities of unanesthetized hens has been investigated. During hyperthermia, the respiratory rate increased to a maximal value and then declined. There was also an increase in cardiac output, followed by a decrease, but the peak cardiac output occurred at a rectal temperature which was significantly higher than that at which the peak respiratory rate was recorded. The increase in cardiac output was the result of an increase in both stroke volume and heart rate. The diminution of cardiac output seemed to be related to a decrease in the stroke volume at high levels of heart rate. The decrease in blood pressure and total peripheral resistance was attributed partly to an increased blood flow through the extremities.


1975 ◽  
Vol 229 (2) ◽  
pp. 275-278 ◽  
Author(s):  
CK Zarins ◽  
DB Skinner

Circulation was maintained in profoundly hypothermic dogs for 8 h at temperatures below 10 degrees C. During cooling to 5 degrees C cardiac output and blood pressure decreased and peripheral resistance rose. Thereafter, circulatory dynamics remained relatively stable over the next 6 h with a gradual decline in blood pressure. The proportion of blood flow to the heart and brain increased with cooling and remained elevated throughout the hypothermia period. Despite continued circulation, pulmonary edema developed after 5-7 h and the dogs were nonviable when rewarmed.


Sign in / Sign up

Export Citation Format

Share Document