Effect of circulating vasopressin on arterial pressure regulation in rats

1989 ◽  
Vol 257 (1) ◽  
pp. H209-H218 ◽  
Author(s):  
C. M. Pawloski ◽  
N. M. Eicker ◽  
L. M. Ball ◽  
M. L. Mangiapane ◽  
G. D. Fink

It has been hypothesized that moderately increased blood levels of arginine vasopressin (AVP) contribute to the development and/or maintenance of hypertension. In this study, male Sprague-Dawley rats on a fixed 1 meq daily sodium intake received 10-day intravenous infusions of 0.2 and 2.0 ng.kg-1.min-1 AVP. The higher infusion rate was above the acute vasoconstrictor threshold for AVP administration and also produced a maximal antidiuretic effect. During chronic AVP administration, however, daily mean arterial pressure, heart rate, and body fluid composition were not changed, despite a maintained antidiuresis. To test the hypothesis that circulating AVP failed to cause hypertension as a result of sensitization of the baroreflex or a direct sympathoinhibitory effect of the peptide, additional experiments were performed in rats subjected to sinoaortic denervation (SAD) or ablation of the area postrema (APX). Infusion of AVP for 10 days into SAD or APX rats caused a sustained antidiuresis but did not change arterial pressure, heart rate, or body fluid composition. In all groups of rats, the depressor response to ganglionic blockade (20 mg/kg hexamethonium) was used to estimate the autonomic component of resting arterial pressure; no change in autonomic cardiovascular control was found using this method in any of the groups during AVP infusion. Long-term elevation of plasma AVP in rats, therefore, does not cause hypertension or significantly affect autonomic regulation of arterial pressure.

1990 ◽  
Vol 258 (6) ◽  
pp. R1472-R1478 ◽  
Author(s):  
K. M. Skoog ◽  
M. L. Blair ◽  
C. D. Sladek ◽  
W. M. Williams ◽  
M. L. Mangiapane

Previous studies have indicated that the area postrema (AP) of the rat is necessary for the development of chronic angiotensin-dependent hypertension. The present study assesses the role of the AP in the maintenance of arterial pressure during hemorrhage. Sprague-Dawley rats were given sham or AP lesions 1 wk before the experiment. They were instrumented with femoral arterial and venous catheters 2 days before the experiment. On the day of the experiment, base-line mean arterial pressure (MAP) was measured for 1 h before hemorrhage. During the following 45 min, each rat was subjected to one 7-ml/kg hemorrhage every 15 min for a total of three hemorrhages. MAP was monitored by computerized data acquisition. As shown previously, MAP was slightly but significantly lower in AP-lesion rats compared with sham-lesion rats before the hemorrhage procedure. In AP-lesion rats, hemorrhage resulted in a significantly greater fall in arterial pressure than in sham-lesion rats. In spite of larger drops in pressure in AP-lesion rats, hemorrhage caused equivalent increases in plasma renin and vasopressin in both groups. In AP-lesion rats compared with sham-lesion rats, significant bradycardia was present before hemorrhage. Hemorrhage caused bradycardia in both sham- and AP-lesion rats relative to the prehemorrhage heart rates, but AP-lesion rats showed greater bradycardia than did sham-lesion rats during every time period. We conclude that the AP may play an important role in the defense of arterial pressure against hemorrhage.


2006 ◽  
Vol 290 (4) ◽  
pp. R1003-R1011 ◽  
Author(s):  
Andrea G. Bechtold ◽  
Deborah A. Scheuer

Systemic corticosterone (Cort) modulates arterial baroreflex control of both heart rate and renal sympathetic nerve activity. Because baroreceptor afferents terminate in the dorsal hindbrain (DHB), an area with dense corticosteroid receptor expression, we tested the hypothesis that prolonged activation of DHB Cort receptors increases the midpoint and reduces the gain of arterial baroreflex control of heart rate in conscious rats. Small (3–4 mg) pellets of Cort (DHB Cort) or Silastic (DHB Sham) were placed on the surface of the DHB, or Cort was administered systemically by placing a Cort pellet on the surface of the dura (Dura Cort). Baroreflex control of heart rate was determined in conscious male Sprague Dawley rats on each of 4 days after initiation of treatment. Plots of arterial pressure vs. heart rate were analyzed using a four-parameter logistic function. After 3 days of treatment, the arterial pressure midpoint for baroreflex control of heart rate was increased in DHB Cort rats (123 ± 2 mmHg) relative to both DHB Sham (108 ± 3 mmHg) and Dura Cort rats (109 ± 2 mmHg, P < 0.05). On day 4, baseline arterial pressure was greater in DHB Cort (112 ± 2 mmHg) compared with DHB Sham (105 ± 2 mmHg) and Dura Cort animals (106 ± 2 mmHg, P < 0.05), and the arterial pressure midpoint was significantly greater than mean arterial pressure in the DHB Cort group only. Also on day 4, maximum baroreflex gain was reduced in DHB Cort (2.72 ± 0.12 beats·min−1·mmHg−1) relative to DHB Sham and Dura Cort rats (3.51 ± 0.28 and 3.37 ± 0.27 beats·min−1·mmHg−1, P < 0.05). We conclude that Cort acts in the DHB to increase the midpoint and reduce the gain of the heart rate baroreflex function.


1980 ◽  
Vol 59 (s6) ◽  
pp. 405s-407s ◽  
Author(s):  
W. T. Talman ◽  
D. R. Alonso ◽  
D. J. Reis

1. In rats, electrolytic lesions of the A2 group of catecholamine neurons result in lability of arterial pressure without hypertension. 2. To establish whether labile arterial pressure, when chronic, will lead to fixed hypertension, we placed lesions in the A2 area of adult male Sprague-Dawley rats and measured mean arterial pressure, heart rate and their variability (expressed as the standard deviation) 11 months later. Controls were age-matched, unoperated or sham-operated rats. 3. In rats with A2 lesions: (a) the mean arterial pressure was lower (103 ± 7.5 mmHg; n = 6; P&lt;0.05) than in sham-operated (123 ± 4.7 mmHg; n = 4) or unoperated (120 ± 3.1 mmHg; n = 9) controls; (b) the standard deviation of mean arterial pressure was higher (16 ± 1.8 mmHg; P&lt;0.001) than in sham-operated (5 ± 0.7 mmHg) or unoperated controls (7 ± 0.6 mmHg); (c) the mean and standard deviation of heart rate did not differ between groups. No histopathological changes were detected in the A2 group. 4. Chronic lability of arterial pressure does not evolve into sustained hypertension nor does it induce systemic lesions.


1998 ◽  
Vol 275 (4) ◽  
pp. R1209-R1217 ◽  
Author(s):  
John P. Collister ◽  
John W. Osborn

The hindbrain circumventricular organ, the area postrema (AP), receives multiple signals linked to body fluid homeostasis. In addition to baroreceptor input, AP cells contain receptors for ANG II, vasopressin, and atrial natriuretic peptide. Hence, it has been proposed that the AP is critical in long-term adjustments in sympathetic outflow in response to changes in dietary NaCl. The present study was designed to test the hypothesis that long-term control of arterial pressure over a range of dietary NaCl requires an intact AP. Male Sprague-Dawley rats were randomly selected for lesion of the AP (APx) or sham lesion. Three months later, rats were instrumented with radiotelemetry transmitters for continuous monitoring of mean arterial pressure (MAP) and heart rate and were placed in individual metabolic cages. Rats were given 1 wk postoperative recovery. The dietary salt protocol consisted of a 7-day period of 1.0% NaCl (control), 14 days of 4.0% NaCl (high), 7 days of 1.0% NaCl, and finally 14 days of 0.1% NaCl (low). The results are reported as the average arterial pressure observed on the last day of the given dietary salt period: APx ( n = 7) 114 ± 2 (1.0%), 110 ± 3 (4.0%), 110 ± 3 (1.0%), and 114 ± 4 (0.1%) mmHg; sham ( n = 6) 115 ± 2 (1.0%), 114 ± 3 (4.0%), 111 ± 3 (1.0%), and 113 ± 2 (0.1%) mmHg. Neither group of rats demonstrated significant changes in MAP throughout the entire dietary salt protocol. Furthermore, no significant differences in MAP were detected between groups throughout the protocol. All lesions were histologically verified. These results suggest that the area postrema plays no role in long-term control of arterial pressure during chronic changes in dietary salt.


2001 ◽  
Vol 280 (6) ◽  
pp. R1719-R1726 ◽  
Author(s):  
Deborah A. Scheuer ◽  
Andrea G. Bechtold

Experiments were performed to determine if glucocorticoids potentiate central hypertensive actions of ANG II. Male Sprague-Dawley rats were treated for 3 days to 3 wk with corticosterone (Cort). Experiments were performed in conscious rats that had previously been instrumented with arterial and venous catheters and an intracerebroventricular guide cannula in a lateral ventricle. Baseline arterial pressure (AP) was greater in Cort-treated rats than in control rats (119 ± 2 vs. 107 ± 1 mmHg, P < 0.01). Microinjection of ANG II intracerebroventricularly produced a significantly larger increase in AP in Cort-treated rats than in control rats. For example, at 30 ng ANG II, AP increased by 23 ± 1 and 16 ± 2 mmHg in Cort-treated and control rats, respectively ( P < 0.01). Microinjection of an angiotensin type 1 receptor antagonist significantly decreased AP (−6 ± 2 mmHg) and heart rate (−26 ± 7 beats/min) in Cort-treated but not control rats. Increases in AP produced by intravenous administration of ANG II were not different between control and Cort-treated rats. Intravenous injections of ANG II antagonist had no significant effects on mean AP or heart rate in control or Cort-treated rats. Therefore, a sustained increase in plasma Cort augments the central pressor effects of ANG II without altering the pressor response to peripheral administration of the hormone.


Author(s):  
Shams M. Ghoneim ◽  
Frank M. Faraci ◽  
Gary L. Baumbach

The area postrema is a circumventricular organ in the brain stem and is one of the regions in the brain that lacks a fully functional blood-brain barrier. Recently, we found that disruption of the microcirculation during acute hypertension is greater in area postrema than in the adjacent brain stem. In contrast, hyperosmolar disruption of the microcirculation is greater in brain stem. The objective of this study was to compare ultrastructural characteristics of the microcirculation in area postrema and adjacent brain stem.We studied 5 Sprague-Dawley rats. Horseradish peroxidase was injected intravenously and allowed to circulate for 1, 5 or 15 minutes. Following perfusion of the upper body with 2.25% glutaraldehyde in 0.1 M sodium cacodylate, the brain stem was removed, embedded in agar, and chopped into 50-70 μm sections with a TC-Sorvall tissue chopper. Sections of brain stem were incubated for 1 hour in a solution of 3,3' diaminobenzidine tetrahydrochloride (0.05%) in 0.05M Tris buffer with 1% H2O2.


2002 ◽  
Vol 283 (1) ◽  
pp. R243-R248 ◽  
Author(s):  
Jennifer M. Sasser ◽  
Jennifer S. Pollock ◽  
David M. Pollock

To determine the influence of chronic ANG II infusion on urinary, plasma, and renal tissue levels of immunoreactive endothelin (ET), ANG II (65 ng/min) or saline vehicle was delivered via osmotic minipump in male Sprague-Dawley rats given either a high-salt diet (10% NaCl) or normal-salt diet (0.8% NaCl). High-salt diet alone caused a slight but not statistically significant increase (7 ± 1%) in mean arterial pressure (MAP). MAP was significantly increased in ANG II-infused rats (41 ± 10%), and the increase in MAP was significantly greater in ANG II rats given a high-salt diet (59 ± 1%) compared with the increase observed in rats given a high-salt diet alone or ANG II infusion and normal-salt diet. After a 2-wk treatment, urinary excretion of immunoreactive ET was significantly increased by ∼50% in ANG II-infused animals and by over 250% in rats on high-salt diet, with or without ANG II infusion. ANG II infusion combined with high-salt diet significantly increased immunoreactive ET content in the cortex and outer medulla, but this effect was not observed in other groups. In contrast, high-salt diet, with or without ANG II infusion, significantly decreased immunoreactive ET content within the inner medulla. These data indicate that chronic elevations in ANG II levels and sodium intake differentially affect ET levels within the kidney and provide further support for the hypothesis that the hypertensive effects of ANG II may be due to interaction with the renal ET system.


1991 ◽  
Vol 260 (6) ◽  
pp. F890-F897 ◽  
Author(s):  
M. S. Mozaffari ◽  
S. Jirakulsomchok ◽  
Z. H. Shao ◽  
J. M. Wyss

This study tested the hypothesis that NaCl-sensitive spontaneously hypertensive rats (SHR-S) display a defect in natriuretic and diuretic responses to acute volume loading that contributes to the rise in arterial pressure observed when the rats are fed a high-NaCl diet. Seven-week-old SHR-S and NaCl-resistant SHR rats (SHR-R) and normotensive (Wistar-Kyoto and Sprague-Dawley rats) were fed high- or basal NaCl diets. After 2.5 wk on the diets, preinstrumented conscious rats received an intravenous infusion (5% body wt; 0.5 ml/min) of isotonic saline, and urine was collected through a bladder catheter for 90 min. Control rats on the high-NaCl diet (compared with basal) excreted a significantly greater percentage of Na+ and volume load. In contrast, SHR-S on high-NaCl diet (compared with basal) had a very small increase in natriuretic response and no increase in diuretic response to volume expansion. The effect of renal denervation on natriuretic and diuretic responses to volume load was tested. In SHR-R on 1 and 8% NaCl diets, renal denervation had little or no effect on these responses, suggesting that renal nerves do not play a prominent role in the dietary NaCl-induced increases in the natriuretic and diuretic responses to volume load. These results demonstrate that NaCl-resistant rats rapidly adapt to diets high in NaCl content with increased natriuretic and diuretic responses to acute volume loading. The failure of SHR-S to adapt to the dietary challenge may result in volume loading and a secondary increase in arterial pressure after feeding.


1996 ◽  
Vol 270 (2) ◽  
pp. R342-R347 ◽  
Author(s):  
P. M. Smith ◽  
A. V. Ferguson

Extracellular single-unit recordings were obtained from area postrema neurons (AP), and peristimulus histograms were used to determine the effects of paraventricular nucleus (PVN) stimulation on these cells from anesthetized Sprague-Dawley rats. Of 91 AP cells tested, 30.8% responded to PVN stimulation with a short-latency (28.2 +/- 3.3 ms, mean +/- SE), short-duration (49.3 +/- 8.0 ms) excitation, whereas 8.6% were inhibited. In animals that had stimulation sites outside of PVN (non-PVN), only 4 of the 72 AP cells tested (5.6%) were influenced by stimulation. These excitatory effects of PVN stimulation on AP neurons were unaffected by V1-receptor blockade. Of 93 nucleus of the solitary tract (NTS) cells tested, 38.9% responded to PVN stimulation with a short-latency (18.5 +/- 2.4 ms), short-duration (48.8 +/- 9.6 ms) excitation and 22.2% with short-latency (20.75 +/- 4.1 ms), long-duration (204.4 +/- 44.9 ms) inhibitions. In contrast, non-PVN stimulation sites influenced only 19% of NTS neurons tested, all of which were excited. These data demonstrate that activation of PVN neurons elicits excitatory effects on the majority of AP neurons influenced. They further emphasize the potential significance of descending hypothalamic inputs in controlling neuronal activity in this circumventricular organ.


1997 ◽  
Vol 272 (6) ◽  
pp. R1698-R1703 ◽  
Author(s):  
M. A. Allen ◽  
P. M. Smith ◽  
A. V. Ferguson

Adrenomedullin (ADM) circulates in the blood at concentrations comparable to other vasoactive peptides with established roles in cardiovascular regulation. Intravenously administered ADM produces a clear hypotensive effect, whereas intracerebroventricular microinjections result in increases in blood pressure (BP). Recently, we demonstrated that ADM influences neurons of the area postrema (AP), a central nervous system site implicated in cardiovascular control. However, to address directly the physiological significance of the actions of ADM at the AP, an in vivo microinjection study was undertaken. ADM, at two concentrations (1 and 10 microM), in volumes of 50, 100, and 200 nl, was microinjected into the AP or NTS of 21 urethan-anesthetized male Sprague-Dawley rats. Microinjection of 10 microM ADM (100 nl) resulted in significant transient (2-5 min) increases in BP [120 s area under the curve (AUC): 684.3 +/- 268.6 mmHg/s (P < 0.05)], and heart rate (HR) [AUC: 12.5 +/- 4.5 beats/min (P < 0.05)]. The lower concentration of ADM (1 microM) had no effect on either BP (179.1 +/- 143.6 mmHg/s) or HR (0.8 +/- 2.6 beats/min). ADM was also microinjected into the immediately adjacent nucleus of the solitary tract, where it was found to be without effect on either BP or HR. This study demonstrates, for the first time, a physiological role for ADM acting at a specific brain site, the AP, to produce significant cardiovascular responses.


Sign in / Sign up

Export Citation Format

Share Document