Adrenergic influences on cardiac function during ventricular fibrillation in isolated rat hearts

1991 ◽  
Vol 261 (5) ◽  
pp. H1452-H1456
Author(s):  
I. Derad ◽  
I. Funk ◽  
P. Pauschinger ◽  
J. Born

Effects of norepinephrine (NE, 10(-6) M), epinephrine (E, 10(-6) M), and vehicle on coronary blood flow (CF), oxygen consumption, and lactate release were compared in 32 isolated rat hearts during 5 min of ventricular fibrillation (VF). After VF, tissue concentrations of ATP, AMP, creatinine phosphate (CP), and lactate were measured. Perfusion of treatments started 30 s after onset of VF and was maintained throughout VF. CF during VF was greater (P less than 0.005) during perfusion of E (mean +/- SE, 5.73 +/- 0.15 ml/min) than NE (5.06 +/- 0.32 ml/min) or vehicle (5.11 +/- 0.18 ml/min). Oxygen consumption during VF was higher during perfusion of E (29.5 +/- 0.9 microliters.min(-1).g wet heart wt(-1)) than vehicle (27.3 +/- 0.7 microliters.min(-1).g(-1); P less than 0.05); average oxygen consumption during NE (27.6 +/- 1.4 microliters.min(-1).g(-1)) and vehicle were comparable. After NE, but not E, tissue AMP concentrations were significantly increased, and CP concentrations were reduced compared with vehicle (P less than 0.05). Enhanced consumption of high-energy phosphates during NE suggests that there is also an enhanced demand for oxygen. However, unlike during E, during NE this demand is not met by an augmented CF. Thus, compared with E, NE treatment during VF may increase the risk of hypoxic damage.

1994 ◽  
Vol 75 (1) ◽  
pp. 97-104 ◽  
Author(s):  
K P Burton ◽  
J G Jones ◽  
T H Le ◽  
A D Sherry ◽  
C R Malloy

1994 ◽  
Vol 14 (1) ◽  
pp. 156-165 ◽  
Author(s):  
Mitsuru Aoki ◽  
Fumikazu Nomura ◽  
Michael E. Stromski ◽  
Miles K. Tsuji ◽  
James C. Fackler ◽  
...  

Brain protection during open heart surgery in the neonate and infant remains inadequate. Effects of the excitatory neurotransmitter antagonists MK-801 and NBQX on recovery of brain cellular energy state and metabolic rates were evaluated in 34 4-week-old piglets (10 MK-801, 10 NBQX, 14 controls) undergoing cardiopulmonary bypass and hypothermic circulatory arrest at 15°C nasopharyngeal temperature for 1 h, as is used clinically for repair of congenital heart defects. MK-801 (dizocilpine) (0.75 mg/kg) or NBQX [2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo( F)quinoxaline] (25 mg/kg) was given intravenously before cardiopulmonary bypass. Equivalent doses were placed in the cardiopulmonary bypass prime plus continuous infusions after reperfusion (0.15 mg kg−1h−1 and 5 mg kg−1h−1). Changes in high-energy phosphate concentrations and pH were analyzed by magnetic resonance spectroscopy in 17 animals until 225 min after reperfusion. Cerebral blood flow determined by radioactive microspheres as well as cerebral oxygen and glucose consumption were studied in 17 other animals. Cerebral blood flow and oxygen consumption were depressed relative to control by both MK-801 and NBQX at baseline. Recovery of phosphocreatine (p = 0.010), ATP (p = 0.030), and intracellular pH (p = 0.004) was accelerated by MK-801 and retarded by NBQX over the 45 min of rewarming reperfusion and the first hour of normothermic reperfusion. The final recovery of ATP at 3 h and 45 min reperfusion was significantly reduced by NBQX (46 ± 26% baseline, mean ± SD) versus control (81 ± 19%) and MK-801 (75 ± 8%) (p = 0.030). Cerebral oxygen consumption recovered to 105 ± 30% baseline in group MK-801 and 94 ± 31% in control but only to 61 ± 22% in group NBQX (p = 0.070). Cerebral blood flow stayed significantly lower in group NBQX relative to control. Thus, MK-801 accelerates recovery of cerebral high-energy phosphates and metabolic rate after cardiopulmonary bypass and hypothermic circulatory arrest in the immature animal. At the dosage used NBQX exerts an adverse effect.


1994 ◽  
Vol 267 (4) ◽  
pp. H1403-H1409 ◽  
Author(s):  
C. A. Sargent ◽  
S. Dzwonczyk ◽  
P. Sleph ◽  
M. Wilde ◽  
G. J. Grover

Isolated rat hearts can be protected by preconditioning, although this has not been found when they are perfused with pyruvate. We addressed the question of whether pyruvate could increase the threshold for preconditioning in isolated rat hearts and whether this could be overcome with increased durations of ischemia. A protocol of four periods of 5 min of ischemic preconditioning (4 x 5 min) protected hearts (improved recovery of function, reduced lactate dehydrogenase release) not perfused with pyruvate from a subsequent 30-min period of global ischemia, but did not protect pyruvate-perfused hearts. Pilot studies indicated that hearts perfused in the presence of pyruvate must be ischemic for approximately 40% longer to produce equivalent ischemic damage in nonpyruvate-treated hearts. Thus the preconditioning period of 5 min was increased by approximately 40% to 7 min to produce equivalent degrees of preconditioning. Hearts preconditioned with the 4 x 7 min protocol with pyruvate were significantly protected against a subsequent severe global ischemia (enhanced recovery of function, reduced lactate dehydrogenase release). High-energy phosphates were measured at the end of the preconditioning protocol (before final global ischemia) to determine whether there was a correlation between cardioprotection and high-energy phosphate levels. There was no correlation between ATP, ADP, or AMP levels and the efficacy of preconditioning. However, an increase in creatine phosphate was associated with cardioprotection, although the importance of this in mediating preconditioning is doubtful. Thus the ability to precondition rat hearts is somewhat dependent on their energy source, but this appears to be due to changes in the severity of the ischemic preconditioning event.


2007 ◽  
Vol 85 (3-4) ◽  
pp. 341-348 ◽  
Author(s):  
Hernando León ◽  
Norma Bautista-López ◽  
Jolanta Sawicka ◽  
Richard Schulz

Hydrogen peroxide (H2O2) causes cardiac dysfunction through multiple mechanisms. As oxidative stress can activate matrix metalloproteinases (MMPs) and, in particular, MMP-2 activity is associated with oxidative stress injury in the heart, we hypothesized that MMP-2 activation by H2O2 in isolated rat hearts contributes to cardiac dysfunction in this model. Isolated working rat hearts were perfused at 37 °C with a recirculating Krebs–Henseleit buffer ± 5 mmol/L pyruvate, known to protect hearts from oxidative stress. H2O2 (300 µmol/L) was added as a single bolus after 20 min of equilibration, and cardiac function was monitored for 60 min. MMPs activities in both the heart and perfusate samples were assessed by gelatin zymography. Tissue high energy phosphates were analysed by HPLC. The actions of 2 MMP inhibitors, doxycycline (75 µmol/L) or Ro 31-9790 (3 µmol/L), were also assessed. H2O2 at 300 µmol/L produced a rapid decline in cardiac mechanical function, which was maximal at 5 min. A peak in perfusate MMP-2 activity was also observed at 5 min. The deleterious effect of H2O2 on cardiac function was abolished by pyruvate but not by the MMPs inhibitors. This study suggests that in intact hearts, H2O2 induces contractile dysfunction independent of MMPs activation.


1981 ◽  
Vol 240 (5) ◽  
pp. H804-H810 ◽  
Author(s):  
H. D. Kleinert ◽  
H. R. Weiss

Blood flow and high-energy phosphate (HEP) content were determined simultaneously in multiple microregions of left ventricular subendocardium in 29 normal anesthetized open-chest rabbits by use of a new micromethod to determine whether a direct linear relationship existed between these parameters. Tissue samples weighed 1-2 mg. ATP and creatine phosphate (CP) content were quantitated in quick-frozen hearts by fluorometry at sites where tissue perfusion was measured by H2 clearance by use of bare-tipped platinum electrodes. A series of validation studies were conducted to ensure that 1) no significant damage to the tissue surrounding the electrode occurred during the period of experimentation and 2) no significant loss of biochemical constituents had occurred due to labile processes during freezing or storage of the tissue. Blood flow, ATP, and CP values averaged 79.1 +/- 24.1 (SD) ml.min-1.100 g-1, 4.9 +/- 1.3 mumol/g tissue, and 8.0 +/- 3.0 mumol/g tissue, respectively, and are similar to those reported in studies using larger tissue samples. Correlation between the heterogeneous distribution of tissue perfusion and HEP revealed no direct linear relationship between these parameters in the normal unstressed rabbit subendocardium.


1982 ◽  
Vol 242 (5) ◽  
pp. H805-H809 ◽  
Author(s):  
G. R. Heyndrickx ◽  
P. Muylaert ◽  
J. L. Pannier

alpha-Adrenergic control of the oxygen delivery to the myocardium during exercise was investigated in eight conscious dogs instrumented for chronic measurements of coronary blood flow, left ventricular (LV) pressure, aortic blood pressure, and heart rate and sampling of arterial and coronary sinus blood. After alpha-adrenergic receptor blockade a standard exercise load elicited a significantly greater increase in heart rate, rate of change of LV pressure (LV dP/dt), LV dP/dt/P, and coronary blood flow than was elicited in the unblocked state. In contrast to the response pattern during control exercise, there was no significant change in coronary sinus oxygen tension (PO2), myocardial arteriovenous oxygen difference, and myocardial oxygen delivery-to-oxygen consumption ratio. It is concluded that the normal relationship between myocardial oxygen supply and oxygen demand is modified during exercise after alpha-adrenergic blockade, whereby oxygen delivery is better matched to oxygen consumption. These results indicate that the increase in coronary blood flow and oxygen delivery to the myocardium during normal exercise is limited by alpha-adrenergic vasoconstriction.


1991 ◽  
Vol 261 (6) ◽  
pp. H2082-H2090 ◽  
Author(s):  
M. Avkiran ◽  
M. J. Curtis

A novel dual lumen aortic cannula was designed and constructed to permit independent perfusion of left and right coronary beds in isolated rat hearts without necessitating the cannulation of individual arteries. Stability of the dual-perfusion preparation was shown to be similar to that of the conventional Langendorff preparation, in terms of coronary flow, heart rate, and high-energy phosphate content. The independence of left and right perfusion beds was confirmed by unilateral infusion of disulfine blue dye and spectrophotometric detection of the dye in ventricular homogenates. Transient cessation of flow to the left coronary bed resulted in severe ventricular arrhythmias upon reperfusion, as in conventional models of regional ischemia and reperfusion. The dual-perfusion model is technically undemanding, reproducible, inexpensive, and can be used in several species. It enables studies with 1) regional low flow ischemia, 2) regional zero-flow ischemia without coronary ligation (with attendant damage to vasculature), 3) selective application of drugs or interventions to the ischemic-reperfused zone, and 4) selective application of components of ischemia and reperfusion to a site anatomically relevant to ischemic heart disease.


Sign in / Sign up

Export Citation Format

Share Document