Differences in outward currents between neonatal and adult rabbit ventricular cells

1994 ◽  
Vol 266 (3) ◽  
pp. H1184-H1194 ◽  
Author(s):  
J. Sanchez-Chapula ◽  
A. Elizalde ◽  
R. Navarro-Polanco ◽  
H. Barajas

In adult rabbit ventricular preparations, action potential duration is significantly increased when stimulation frequency is increased from 0.1 to 1.0 Hz. In neonatal preparations, a similar change in stimulation frequency produced no significant increase in action potential duration. To identify the ionic basis for this difference, we studied different outward currents in single myocytes from papillary muscle and from epicardial tissue of adult and neonatal rabbits. The densities of the outward currents in neonatal cells were about one-half of the current density in adult cells. The density of the voltage-activated transient outward current (I(to1)) was smaller in cells from papillary muscle than in cells from epicardium in adult and newborn rabbits. We found major differences in the kinetic behavior of I(to1) between adult and neonatal cells: 1) the rate of apparent inactivation was faster in neonatal cells, and 2) the recovery from inactivation was significantly faster in neonatal cells, with a time constant of 113 vs. 1,356 ms. We propose that this marked difference in the recovery from inactivation of I(to1) is the basis for the difference in frequency dependence of action potential duration.

2001 ◽  
Vol 90 (5) ◽  
pp. 1720-1728 ◽  
Author(s):  
Xue-Qian Zhang ◽  
Lian-Qin Zhang ◽  
Bradley M. Palmer ◽  
Yuk-Chow Ng ◽  
Timothy I. Musch ◽  
...  

Two electrophysiological manifestations of myocardial infarction (MI)-induced myocyte hypertrophy are prolongation of action potential duration (APD) and reduction of transient outward current ( I to) density. Because high-intensity sprint training (HIST) ameliorated myocyte hypertrophy and improved myocyte Ca2+ homeostasis and contractility after MI, the present study evaluated whether 6–8 wk of HIST would shorten the prolonged APD and improve the depressed I to in post-MI myocytes. There were no differences in resting membrane potential and action potential amplitude (APA) measured in myocytes isolated from sham-sedentary (Sed), MI-Sed, and MI-HIST groups. Times required for repolarization to 50 and 90% APA were significantly ( P < 0.001) prolonged in MI-Sed myocytes. HIST reduced times required for repolarization to 50 and 90% APA to values observed in Sham-Sed myocytes. The fast and slow components of I towere significantly ( P < 0.0001) reduced in MI-Sed myocytes. HIST significantly ( P < 0.001) enhanced the fast and slow components of I to in MI myocytes, although not to levels observed in Sham-Sed myocytes. There were no significant differences in steady-state I toinactivation and activation parameters among Sham-Sed, MI-Sed, and MI-HIST myocytes. Likewise, recovery from time-dependent inactivation was also similar among the three groups. We suggest that normalization of APD after MI by HIST may be mediated by restoration of I to toward normal levels.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
David Tinaquero ◽  
◽  
Teresa Crespo-García ◽  
Raquel G. Utrilla ◽  
Paloma Nieto-Marín ◽  
...  

1994 ◽  
Vol 266 (5) ◽  
pp. H1738-H1745 ◽  
Author(s):  
Q. Li ◽  
E. C. Keung

In the one-clip, two-kidney model of hypertensive rat, a gradual chronic pressure overload is imposed on the heart. Myocardial hypertrophy resulting from such pressure overload is associated with an increased but slower inactivating L-type calcium current and prolongation of action potential duration. Voltage clamp experiments in a variety of excitable tissues indicate that a 4-aminopyridine-sensitive transient outward current (Ito) plays an important role in regulating the action potential duration. Accordingly, we studied Ito in single adult cardiac myocytes enzymatically isolated from hypertrophied left ventricles of the renovascular hypertensive (HBP) rat hearts using the whole cell patch-clamp method. The current densities (normalized to cell capacitative surface area) measured at the early transient peak Ito, at the steady state, and as the difference between the transient peak and the steady state were larger in HBP cells (n = 23) than in control (Ctrl) cells (n = 20) (P < 0.05). There was no difference in the Ito reversal potential between Ctrl (-60.9 +/- 1.9 mV, mean +/- SE; n = 16) and HBP (-63.7 +/- 2.6 mV; n = 19) cells. The observed increase in Ito amplitude was not due to an increase in the number of channels available for activation or in the fraction of channels activated because there were no statistical differences in the membrane potential at which one-half of the Ito channels are activated (V0.5) for the steady-state activation and inactivation curves between Ctrl and HBP cells. The time course of inactivation of Ito was described by a double-exponential function.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 265 (4) ◽  
pp. H1466-H1470 ◽  
Author(s):  
J. Mansourati ◽  
B. Le Grand

In human atrial fibers, the action potential undergoes a major developmental change in shape in the months immediately after birth. Transient potassium outward currents, which may affect the shape of the action potential, have been studied using a whole cell voltage-clamp technique with single cells from the atria of young patients aged 3-60 mo. Transient outward current (I(to)) amplitude was measured as the difference between the peak current and the steady-state outward current (I(late)) at the end of the voltage step. The density of I(to) was significantly reduced in adult diseased cells (n = 18) compared with normal cells (n = 21) in a large range of potential and absent in young diseased cells (n = 13). Furthermore, the I(late) recorded in young cells was significantly greater (23.7 +/- 5.74 pA/pF at 60 mV) than in adult normal cells (12.71 +/- 2.25 pA/pF at 60 mV), whereas I(late) was not significantly different between both groups of adult cells. Nevertheless, a 4-aminopyridine-sensitive I(to) has been recorded in young cells. A decrease in the frequency of clamp steps (from 0.1 to 0.01 Hz) did not reactivate a I(to) in young cells. This absence of 4-aminopyridine-sensitive Ito in young cells probably results from either a normal developmental change of this current or from pathological alterations like those described in adult diseased atria.


1998 ◽  
Vol 275 (1) ◽  
pp. H301-H321 ◽  
Author(s):  
Marc Courtemanche ◽  
Rafael J. Ramirez ◽  
Stanley Nattel

The mechanisms underlying many important properties of the human atrial action potential (AP) are poorly understood. Using specific formulations of the K+, Na+, and Ca2+ currents based on data recorded from human atrial myocytes, along with representations of pump, exchange, and background currents, we developed a mathematical model of the AP. The model AP resembles APs recorded from human atrial samples and responds to rate changes, L-type Ca2+ current blockade, Na+/Ca2+ exchanger inhibition, and variations in transient outward current amplitude in a fashion similar to experimental recordings. Rate-dependent adaptation of AP duration, an important determinant of susceptibility to atrial fibrillation, was attributable to incomplete L-type Ca2+ current recovery from inactivation and incomplete delayed rectifier current deactivation at rapid rates. Experimental observations of variable AP morphology could be accounted for by changes in transient outward current density, as suggested experimentally. We conclude that this mathematical model of the human atrial AP reproduces a variety of observed AP behaviors and provides insights into the mechanisms of clinically important AP properties.


1995 ◽  
Vol 269 (4) ◽  
pp. H1288-H1296 ◽  
Author(s):  
D. W. Wang ◽  
T. Kiyosue ◽  
S. Shigematsu ◽  
M. Arita

Ionic mechanisms related to the prolongation of cardiac action potential in rats with chronic diabetes mellitus were studied using whole cell voltage-clamp techniques. Diabetes was induced by injection of streptozotocin (STZ; 65 mg/kg body wt) into the tail vein, and ventricular myocytes were isolated from STZ-injected rats (24-30 wk) and from age-matched normal rats. The current densities of transient outward current (Ito), a steady-state outward current, and L-type Ca2+ current (ICa) were significantly smaller in cells from diabetic animals. In addition, the kinetics of Ito of diabetic cells were modified. 1) The decay of Ito was well fitted by a sum of two exponential components in normal cells; there was only one (slow) component in the diabetic cells. 2) The steady-state inactivation curve of Ito in diabetic cells shifted by 5 mV in the negative direction. 3) Recovery from inactivation of Ito was slower in cells from diabetic animals. These alterations in Ito and the steady-state outward current can account for most of the action potential prolongation heretofore documented. The decrease of ICa may possibly be related to the depressed contraction seen in chronic diabetic mellitus.


1995 ◽  
Vol 268 (6) ◽  
pp. H2513-H2521 ◽  
Author(s):  
L. M. Pacioretty ◽  
R. F. Gilmour

Developmental changes of the transient outward current (I(to)) and action potential configuration were determined in canine epicardium ranging in age from fetal to 60 wk. The contributions of I(to) to rapid initial repolarization and to terminal repolarization were estimated by measuring the amplitude of phase 1 of the action potential and action potential duration, respectively. Phase 1 amplitude decreased progressively from fetal to 40 wk and remained constant thereafter. Action potential duration decreased from fetal to 2 wk, increased to 20 wk, and tended to decrease thereafter. Peak I(to) at +40 mV increased progressively from 2 to 60 wk. However, I(to) density was less at 2-10 wk than at 20-60 wk. The time constant of decay of I(to) increased with age from 2 to 60 wk, whereas the steady-state voltage dependence of inactivation did not vary with age. The time constant for the initial rapid phase of recovery from inactivation decreased from 2 to 10 wk and remained constant thereafter. The time constant for the more slowly evolving phase did not vary with age. The observation that the age-dependent reduction in phase 1 amplitude did not necessarily coincide with significant increases in I(to) density suggests that maturation of other ionic currents or transport mechanisms may contribute to developmental alterations of phase 1 repolarization.


Sign in / Sign up

Export Citation Format

Share Document