Human sympathetic and vagal baroreflex responses to sequential nitroprusside and phenylephrine

1999 ◽  
Vol 276 (5) ◽  
pp. H1691-H1698 ◽  
Author(s):  
László Rudas ◽  
Alexandra A. Crossman ◽  
Carlos A. Morillo ◽  
John R. Halliwill ◽  
Kari U. O. Tahvanainen ◽  
...  

We evaluated a method of baroreflex testing involving sequential intravenous bolus injections of nitroprusside followed by phenylephrine and phenylephrine followed by nitroprusside in 18 healthy men and women, and we drew inferences regarding human sympathetic and vagal baroreflex mechanisms. We recorded the electrocardiogram, photoplethysmographic finger arterial pressure, and peroneal nerve muscle sympathetic activity. We then contrasted least squares linear regression slopes derived from the depressor (nitroprusside) and pressor (phenylephrine) phases with 1) slopes derived from spontaneous fluctuations of systolic arterial pressures and R-R intervals, and 2) baroreflex gain derived from cross-spectral analyses of systolic pressures and R-R intervals. We calculated sympathetic baroreflex gain from integrated muscle sympathetic nerve activity and diastolic pressures. We found that vagal baroreflex slopes are less when arterial pressures are falling than when they are rising and that this hysteresis exists over pressure ranges both below and above baseline levels. Although pharmacological and spontaneous vagal baroreflex responses correlate closely, pharmacological baroreflex slopes tend to be lower than those derived from spontaneous fluctuations. Sympathetic baroreflex slopes are similar when arterial pressure is falling and rising; however, small pressure elevations above baseline silence sympathetic motoneurons. Vagal, but not sympathetic baroreflex gains vary inversely with subjects’ ages and their baseline arterial pressures. There is no correlation between sympathetic and vagal baroreflex gains. We recommend repeated sequential nitroprusside followed by phenylephrine doses as a simple, efficientmeans to provoke and characterize human vagal and sympathetic baroreflex responses.

Author(s):  
Joshua Eric Gonzalez ◽  
William Harold Cooke

E-cigarettes like the JUUL are marketed as an alternative to smoking for those who want to decrease the health risks of tobacco. Tobacco cigarettes increase heart rate (HR) and arterial pressure (AP), while reducing muscle sympathetic nerve activity (MSNA) through sympathetic baroreflex inhibition. The acute effects of e-cigarettes on AP and MSNA have not been reported: our purpose was to clarify this issue. Using a randomized crossover design, participants inhaled on a JUUL containing nicotine (59 mg/ml) and a similar placebo e-cigarette (0 mg/ml). Experiments were separated by ~1 month. We recorded baseline ECG, AP (n=15), and MSNA (n=10). Subjects rested for 10 min, (BASE) and then inhaled once every 30 s on an e-cigarette that contained nicotine or placebo (VAPE) for 10 min followed by a 10-min recovery (REC). Data were expressed as Δmeans±SE from BASE. HR increased in the nicotine condition during VAPE and returned to BASE values in REC (5.0±1.3 nicotine vs 0.1±0.8 b/min placebo, during VAPE P<.01). AP increased in the nicotine condition during VAPE and remained elevated during REC. (6.5±1.6 nicotine vs 2.6±1 mmHg placebo, during VAPE and 4.6.0±1.7 nicotine vs 1.4±1.4 mmHg placebo during REC; p<.05). MSNA decreased from BASE to VAPE and did not restore during REC (-7.1±1.6 nicotine vs 2.6±2 bursts/min placebo during VAPE and -5.8±1.7 nicotine vs 0.5±1.4 placebo during REC; p<.05). Our results show that acute e-cigarette usage increases mean arterial pressure leading to a baroreflex mediated inhibition of MSNA.


2005 ◽  
Vol 98 (1) ◽  
pp. 343-349 ◽  
Author(s):  
Renaud Tamisier ◽  
Amit Anand ◽  
Luz M. Nieto ◽  
David Cunnington ◽  
J. Woodrow Weiss

Sustained and episodic hypoxic exposures lead, by two different mechanisms, to an increase in ventilation after the exposure is terminated. Our aim was to investigate whether the pattern of hypoxia, cyclic or sustained, influences sympathetic activity and hemodynamics in the postexposure period. We measured sympathetic activity (peroneal microneurography), hemodynamics [plethysmographic forearm blood flow (FBF), arterial pressure, heart rate], and peripheral chemosensitivity in normal volunteers on two occasions during and after 2 h of either exposure. By design, mean arterial oxygen saturation was lower during sustained relative to cyclic hypoxia. Baseline to recovery muscle sympathetic nerve activity and blood pressure went from 15.7 ± 1.2 to 22.6 ± 1.9 bursts/min ( P < 0.01) and from 85.6 ± 3.2 to 96.1 ± 3.3 mmHg ( P < 0.05) after sustained hypoxia, respectively, but did not exhibit significant change from 13.6 ± 1.5 to 17.3 ± 2.5 bursts/min and 84.9 ± 2.8 to 89.8 ± 2.5 mmHg after cyclic hypoxia. A significant increase in FBF occurred after sustained, but not cyclic, hypoxia, from 2.3 ± 0.2 to 3.29 ± 0.4 and from 2.2 ± 0.1 to 3.1 ± 0.5 ml·min−1·100 g of tissue−1, respectively. Neither exposure altered the ventilatory response to progressive isocapnic hypoxia. Two hours of sustained hypoxia increased not only muscle sympathetic nerve activity but also arterial blood pressure. In contrast, cyclic hypoxia produced slight but not significant changes in hemodynamics and sympathetic activity. These findings suggest the cardiovascular response to acute hypoxia may depend on the intensity, rather than the pattern, of the hypoxic exposure.


2011 ◽  
Vol 300 (5) ◽  
pp. H1788-H1793 ◽  
Author(s):  
John J. Durocher ◽  
Jenna C. Klein ◽  
Jason R. Carter

Mental stress consistently induces a pressor response that is often accompanied by a paradoxical increase of muscle sympathetic nerve activity (MSNA). The purpose of the present study was to evaluate sympathetic baroreflex sensitivity (BRS) by examining the relations between spontaneous fluctuations of diastolic arterial pressure (DAP) and MSNA. We hypothesized that sympathetic BRS would be attenuated during mental stress. DAP and MSNA were recorded during 5 min of supine baseline, 5 min of mental stress, and 5 min of recovery in 32 young healthy adults. Burst incidence and area were determined for each cardiac cycle and placed into 3-mmHg DAP bins; the slopes between DAP and MSNA provided an index of sympathetic BRS. Correlations between DAP and MSNA were strong (>0.5) during baseline in 31 of 32 subjects, but we evaluated the change in slope only for those subjects maintaining a strong correlation during mental stress (16 subjects). During baseline, the relation between DAP and MSNA was negative when expressed as either burst incidence [slope = −1.95 ± 0.18 bursts·(100 beats)−1·mmHg−1; r = −0.86 ± 0.03] or total MSNA [slope = −438 ± 91 units·(beat)−1 mmHg−1; r = −0.76 ± 0.06]. During mental stress, the slope between burst incidence and DAP was significantly reduced [slope = −1.14 ± 0.12 bursts·(100 beats)−1·mmHg−1; r = −0.72 ± 0.03; P < 0.01], indicating attenuation of sympathetic BRS. A more detailed analysis revealed an attenuation of sympathetic BRS during the first 2 min of mental stress ( P < 0.01) but no change during the final 3 min of mental stress ( P = 0.25). The present study demonstrates that acute mental stress attenuates sympathetic BRS, which may partially contribute to sympathoexcitation during the mental stress-pressor response. However, this attenuation appears to be isolated to the onset of mental stress. Moreover, variable MSNA responses to mental stress do not appear to be directly related to sympathetic BRS.


2012 ◽  
Vol 302 (3) ◽  
pp. H826-H836 ◽  
Author(s):  
Gregory S. H. Chan ◽  
Azharuddin Fazalbhoy ◽  
Ingvars Birznieks ◽  
Vaughan G. Macefield ◽  
Paul M. Middleton ◽  
...  

Assessment of spontaneous slow waves in the peripheral blood volume using the photoplethysmogram (PPG) has shown potential clinical value, but the physiological correlates of these fluctuations have not been fully elucidated. This study addressed the contribution of arterial pressure and muscle sympathetic nerve activity (MSNA) in beat-to-beat PPG variability in resting humans under spontaneous breathing conditions. Peripheral PPG waveforms were measured from the fingertip, earlobe, and toe in young and healthy individuals ( n = 13), together with the arterial pressure waveform, electrocardiogram, respiration, and direct measurement of MSNA by microneurography. Cross-spectral coherence analysis revealed that among the PPG waveforms, low-frequency fluctuations (0.04–0.15 Hz) in the ear PPG had the highest coherence with arterial pressure (0.71 ± 0.15) and MSNA (0.44 ± 0.18, with a peak of 0.71 ± 0.16 at 0.10 ± 0.03 Hz). The normalized midfrequency powers (0.08–0.15 Hz), with an emphasis on the 0.1-Hz region, were positively correlated between MSNA and the ear PPG ( r = 0.77, P = 0.002). Finger and toe PPGs had lower coherence with arterial pressure (0.35 ± 0.10 and 0.30 ± 0.11, respectively) and MSNA (0.33 ± 0.10 and 0.26 ± 0.10, respectively) in the LF band but displayed higher coherence between themselves (0.54 ± 0.09) compared with the ear ( P < 0.001), which may suggest the dominance of regional vasomotor activities and a common sympathetic influence in the glabrous skin. These findings highlight the differential mechanisms governing PPG waveform fluctuations across different body sites. Spontaneous PPG variability in the ear includes a major contribution from arterial pressure and MSNA, which may provide a rationale for its clinical utility.


2013 ◽  
Vol 304 (12) ◽  
pp. H1615-H1623 ◽  
Author(s):  
Jacqueline K. Limberg ◽  
Barbara J. Morgan ◽  
William G. Schrage ◽  
Jerome A. Dempsey

In patients with hypertension, volitional slowing of the respiratory rate has been purported to reduce arterial pressure via withdrawal of sympathetic tone. We examined the effects of paced breathing at 7, 14, and 21 breaths/min, with reciprocal changes in tidal volume, on muscle sympathetic nerve activity, forearm blood flow, forearm vascular conductance, and blood pressure in 21 men and women, 8 of whom had modest elevations in systemic arterial pressure. These alterations in breathing frequency and volume did not affect steady-state levels of sympathetic activity, blood flow, vascular conductance, or blood pressure (all P > 0.05), even though they had the expected effect on sympathetic activity within breaths (i.e., increased modulation during low-frequency/high-tidal volume breathing) ( P < 0.001). These findings were consistent across subjects with widely varied baseline levels of sympathetic activity (4-fold), mean arterial pressure (78–110 mmHg), and vascular conductance (15-fold), and those who became hypocapnic during paced breathing vs. those who maintained normocapnia. These findings challenge the notion that slow, deep breathing lowers arterial pressure by suppressing steady-state sympathetic outflow.


Author(s):  
Andrew D'Souza ◽  
Mark B. Badrov ◽  
Katelyn N. Wood ◽  
Sophie Lalande ◽  
Neville Gordon Suskin ◽  
...  

The current study evaluated the hypothesis that six months of exercise-based cardiac rehabilitation (CR) would improve sympathetic neural recruitment in patients with ischemic heart disease (IHD). Microneurography was used to evaluate action potential (AP) discharge patterns within bursts of muscle sympathetic nerve activity (MSNA), in eleven patients with IHD (1 female; 61±9 years) pre- (Pre-CR) and post- six months of aerobic and resistance training-based CR (Post-CR). Measures were made at baseline and during maximal voluntary end-inspiratory (EI-APN) and end-expiratory apneas (EE-APN). Data were analyzed during 1-minute of baseline and the second half of apneas. At baseline, overall sympathetic activity was less Post-CR (all P<0.01). During EI-APN, AP recruitment was not observed Pre-CR (all P>0.05) but increases in both within-burst AP firing frequency (∆Pre-CR: 2±3 AP spikes/burst vs. ∆Post-CR: 4±3 AP spikes/burst; P=0.02) and AP cluster recruitment (∆Pre-CR: -1±2 vs. ∆Post-CR: 2±2; P<0.01) were observed in Post-CR tests. In contrast, during EE-APN, AP firing frequency was not different Post-CR compared to Pre-CR tests (∆Pre-CR: 269±202 spikes/min vs. ∆Post-CR: 232±225 spikes/min; P=0.54), and CR did not modify the recruitment of new AP clusters (∆Pre-CR: -1±3 vs. ∆Post-CR: 0±1; P=0.39), or within-burst firing frequency (∆Pre-CR: 3±3 AP spikes/burst vs. ∆Post-CR: 2±2 AP spikes/burst; P=0.21). These data indicate that CR improves some of the sympathetic nervous system dysregulation associated with cardiovascular disease, primarily via a reduction in resting sympathetic activation. However, the benefits of CR on sympathetic neural recruitment may depend upon the magnitude of initial impairment.


2005 ◽  
Vol 288 (5) ◽  
pp. R1248-R1255 ◽  
Author(s):  
Virginia L. Brooks ◽  
Yue Qi ◽  
Theresa L. O'Donaughy

To test the hypothesis that high osmolality acts in the brain to chronically support mean arterial pressure (MAP) and lumbar sympathetic nerve activity (LSNA), the osmolality of blood perfusing the brain was reduced in conscious water-deprived and water-replete rats by infusion of hypotonic fluid via bilateral nonoccluding intracarotid catheters. In water-deprived rats, the intracarotid hypotonic infusion, estimated to lower osmolality by ∼2%, decreased MAP by 9 ± 1 mmHg and LSNA to 86 ± 7% of control; heart increased by 25 ± 8 beats per minute (bpm) (all P < 0.05). MAP, LSNA, and heart rate did not change when the hypotonic fluid was infused intravenously. The intracarotid hypotonic fluid infusion was also ineffective in water-replete rats. Prior treatment with a V1 vasopressin antagonist did not alter the subsequent hypotensive and tachycardic effects of intracarotid hypotonic fluid infusion in water-deprived rats. In summary, acute decreases in osmolality of the carotid blood of water-deprived, but not water-replete, rats decreases MAP and LSNA and increases heart rate. These data support the hypothesis that the elevated osmolality induced by water deprivation acts via a region perfused by the carotid arteries, presumably the brain, to tonically increase MAP and LSNA and suppress heart rate.


2004 ◽  
Vol 287 (4) ◽  
pp. H1658-H1662 ◽  
Author(s):  
N. Charkoudian ◽  
E. A. Martin ◽  
F. A. Dinenno ◽  
J. H. Eisenach ◽  
N. M. Dietz ◽  
...  

Volume expansion often ameliorates symptoms of orthostatic intolerance; however, the influence of this increased volume on integrated baroreflex control of vascular sympathetic activity is unknown. We tested whether acute increases in central venous pressure (CVP) diminished subsequent responsiveness of muscle sympathetic nerve activity (MSNA) to rapid changes in arterial pressure. We studied healthy humans under three separate conditions: control, acute 10° head-down tilt (HDT), and saline infusion (SAL). In each condition, heart rate, arterial pressure, CVP, and peroneal MSNA were measured during 5 min of rest and then during rapid changes in arterial pressure induced by sequential boluses of nitroprusside and phenylephrine (modified Oxford technique). Sensitivities of integrated baroreflex control of MSNA and heart rate were assessed as the slopes of the linear portions of the MSNA-diastolic blood pressure and R-R interval-systolic pressure relations, respectively. CVP increased ∼2 mmHg in both SAL and HDT conditions. Resting heart rate and mean arterial pressure were not different among trials. Sensitivity of baroreflex control of MSNA was decreased in both SAL and HDT condition, respectively: −3.1 ± 0.6 and −3.3 ± 1.0 versus −5.0 ± 0.6 units·beat−1·mmHg−1 ( P < 0.05 for SAL and HDT vs. control). Sensitivity of baroreflex control of the heart was not different among conditions. Our results indicate that small increases in CVP decrease the sensitivity of integrated baroreflex control of sympathetic nerve activity in healthy humans.


2002 ◽  
Vol 93 (4) ◽  
pp. 1260-1264 ◽  
Author(s):  
Jason R. Carter ◽  
Chester A. Ray ◽  
William H. Cooke

Increases in sympathetic neural activity occur independently with either vestibular or mental stimulation, but it is unknown whether sympathetic activation is additive or inhibitive when both stressors are combined. The purpose of the present study was to investigate the combined effects of vestibular and mental stimulation on sympathetic neural activation and arterial pressure in humans. Muscle sympathetic nerve activity (MSNA), arterial pressure, and heart rate were recorded in 10 healthy volunteers in the prone position during 1) head-down rotation (HDR), 2) mental stress (MS; using arithmetic), and 3) combined HDR and MS. HDR significantly ( P< 0.05) increased MSNA (9 ± 2 to 13 ± 2 bursts/min). MS significantly increased MSNA (8 ± 2 to 13 ± 2 bursts/min) and mean arterial pressure (87 ± 2 to 101 ± 2 mmHg). Combined HDR and MS significantly increased MSNA (9 ± 1 to 16 ± 2 bursts/min) and mean arterial pressure (89 ± 2 to 100 ± 3 mmHg). Increases in MSNA (7 ± 1 bursts/min) during the combination trial were not different from the algebraic sum of each trial performed alone (8 ± 2 bursts/min). We conclude that the interaction for MSNA and arterial pressure is additive during combined vestibular and mental stimulation. Therefore, vestibular- and stress-mediated increases of MSNA appear to occur independently in humans.


2020 ◽  
Vol 128 (5) ◽  
pp. 1196-1206
Author(s):  
Kazumasa Manabe ◽  
Shizue Masuki ◽  
Yu Ogawa ◽  
Koji Uchida ◽  
Yoshi-ichiro Kamijo ◽  
...  

Prospective cardiovascular adjustment occurs before starting voluntary exercise, increasing heart rate and arterial pressure followed by muscle vasodilation; however, the precise mechanisms and significance for this vasodilation remain unknown. We found that during the countdown before starting exercise cerebral blood flow velocity increased, followed by increases in heart rate and arterial pressure, which suppressed MSNA through baroreflex, resulting in thigh muscle vasodilation to increase oxygen consumption rate, which might make it easier to start exercise.


Sign in / Sign up

Export Citation Format

Share Document