Metabolism of S-nitrosoglutathione by endothelial cells

2001 ◽  
Vol 281 (1) ◽  
pp. H432-H439 ◽  
Author(s):  
Hong Zeng ◽  
Netanya Y. Spencer ◽  
Neil Hogg

S-nitrosoglutathione (GSNO) is an inhibitor of platelet aggregation and has also been shown to protect the ischemic heart from reperfusion-mediated injury. Although GSNO is often used in cell culture as a source of nitric oxide, the mechanisms of GSNO metabolism are not well established. We show here that GSNO decomposition by bovine aortic endothelial cells has an absolute dependence on the presence of cystine in the cell culture medium. In addition, GSNO decay is inhibited by diethyl maleate, an intracellular glutathione scavenger, but not by buthionine sulfoximine, a glutathione synthesis inhibitor. This indicates that thiols in general, rather than specifically glutathione, are the major factors that influence GSNO decay. Only 40% of the nitroso group of GSNO could be recovered as nitrite/nitrate, suggesting that the primary route of GSNO decay is reductive and that nitric oxide is only a minor product of GSNO decay. We conclude that the intracellular thiol pool causes the reduction of extracellular disulfides to thiols, which then directly reduce GSNO.

2001 ◽  
Vol 281 (3) ◽  
pp. H1327-H1333 ◽  
Author(s):  
Muthuvel Jayachandran ◽  
Toshio Hayashi ◽  
Daigo Sumi ◽  
Akihisa Iguchi ◽  
Virginia M. Miller

Endothelial nitric oxide synthase (eNOS) is regulated both by caveolin-1 and 17β-estradiol (E2). Temporal relationships between effects of estrogen on caveolin-1 and nitric oxide (NO) are not known. Therefore, this study was designed to determine whether estrogen regulates caveolin-1 and, if so, whether such regulation corresponds to changes in nitrite/nitrate (NOx) production. Bovine aortic endothelial cells (BAECs) were cultured in the absence and presence of 17β-estradiol or 17α-estradiol (10−8 and 10−10 M) for 12, 24, and 48 h. eNOS protein expression and NOx production increased significantly after 24 h but not after 12-h treatment with 17β- and not 17α-estradiol. Both mRNA and protein for caveolin-1 were increased significantly only after 48-h treatment with E2, but eNOS protein and NOx production were decreased compared with cells treated for 24 h. These increases in caveolin-1 were inhibited by the estrogen receptor antagonist ICI-182,780 (10−6 M). Results of this study suggest that E2 stimulates caveolin-1 transcription and translation through estrogen receptor-mediated mechanisms. The results further suggest that estrogen may indirectly regulate NOx through caveolin-1 expression, which inhibits eNOS catalytic activity.


2018 ◽  
Vol 10 (27) ◽  
pp. 3364-3374 ◽  
Author(s):  
Akash S. Munshi ◽  
Chengpeng Chen ◽  
Alexandra D. Townsend ◽  
R. Scott Martin

Here we show that separate modules fabricated using 3D printing technology can be easily assembled to quantitate the amount of nitric oxide released from endothelial cells following ATP stimulation.


1997 ◽  
Vol 273 (4) ◽  
pp. H1962-H1967 ◽  
Author(s):  
Xiaofang Wang ◽  
Dustan A. Barber ◽  
Debra A. Lewis ◽  
Christopher G. A. McGregor ◽  
Gary C. Sieck ◽  
...  

Experiments were designed to determine whether normal fluctuations in sex steroid hormones alter gene transcription for endothelial nitric oxide synthase (NOS) and preproendothelin-1 (prepro-ET-1). Aortic endothelial cells were removed from adult, gonadally intact male and female or ovariectomized Yorkshire pigs. Endothelial cells were prepared for Northern blot analysis, Western blot analysis or enzyme activity. Nitric oxide products (NOx) and endothelin-1 (ET-1) in plasma were measured by chemiluminescence and radioimmunoassay, respectively. Northern blot analysis identified single bands corresponding to endothelial NOS and prepro-ET-1. Quantification of the blots showed an increase in expression of mRNA for both endothelial NOS and prepro-ET-1 in ovariectomized pigs compared with gonadally intact male and female pigs. There were no differences in amount of endothelial NOS protein identified by Western blot analysis among groups. On the contrary, plasma concentrations of NOx were significantly decreased in ovariectomized pigs, and there were no differences either in the concentrations of ET-1 in the plasma or extracts from the coronary arteries. These results suggest that expression of endothelial NOS and prepro-ET-1 may be regulated at transcriptional level by ovarian hormones. In addition, the ovarian hormones may regulate production of these endothelium-derived factors at the posttranscriptional level.


1995 ◽  
Vol 269 (3) ◽  
pp. C757-C765 ◽  
Author(s):  
B. J. Buckley ◽  
Z. Mirza ◽  
A. R. Whorton

Vascular endothelium responds to Ca(2+)-mobilizing agonists by producing nitric oxide (NO), a potent vasodilator and inhibitor of platelet aggregation. Regulation of constitutively expressed endothelial NO synthase (eNOS) in intact cells is not well understood. We investigated the kinetics of NO formation in response to Ca(2+)-mobilizing agonists, the requirement for extracellular L-arginine, and the role of NO in regulating eNOS activity. When endothelial cells were stimulated with bradykinin and ATP in the presence of 100 microM L-arginine, we observed a rapid and transient rise in intracellular Ca2+ concentration ([Ca2+]i) from 50 +/- 8 nM to 698 +/- 74 and 637 +/- 53 nM, respectively, and a rapid and transient rise in NO production from a basal level of 37 pmol.min-1.mg protein-1 to 256 and 275 pmol.min-1.mg protein-1, respectively. When cells were stimulated with A-23187 or thapsigargin in the presence of 100 microM L-arginine, we observed a sustained increase in [Ca2+]i and a sustained increase in NO production. The rate of NO synthesis was linear over 30 min, rising above control levels of 7 pmol/min to 53 pmol/min for A-23187 and 62 pmol/min for thapsigargin. Thapsigargin stimulated NO production and [Ca2+]i with 50% effective concentration values of 0.01 and 0.05 microM, respectively. Ca(2+)-stimulated NO production was attenuated by the NO synthase inhibitor NG-monomethyl-L-arginine, the removal of extracellular L-arginine, and the Ca(2+)-chelator ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. When we exposed cells to NO gas (3.1 mM for 15 min) and S-nitrosoglutathione (10 mM for 1 h) thapsigargin-stimulated NO production was decreased by 50%.(ABSTRACT TRUNCATED AT 250 WORDS)


2003 ◽  
Vol 374 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Kennedy MAKONDO ◽  
Kazuhiro KIMURA ◽  
Naoki KITAMURA ◽  
Takanori KITAMURA ◽  
Daisuke YAMAJI ◽  
...  

Hepatocyte growth factor (HGF) causes endothelium-dependent vasodilation, but its relation to endothelial nitric oxide synthase (eNOS) activity remains to be elucidated. Treatment of bovine aortic endothelial cells with HGF increased eNOS activity within minutes, accompanied by an increase of activity-related site-specific phosphorylation of eNOS. The phosphorylation was completely abolished by pretreatment of the cells with a phosphoinositide 3-kinase (PI3K) inhibitor (wortmannin) and by transfection of dominant-negative Akt, and the enzyme activity was inhibited by wortmannin. In addition, eNOS activity and phosphorylation were abolished by pretreatment of the cells with an intracellular Ca2+-chelator, bis-(o-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid tetrakis(acetoxymethyl ester) (BAPTA/AM), with a suppression of Akt phosphorylation. These results suggest that HGF stimulates eNOS activity by a PI3K/Akt-dependent phosphorylation in a Ca2+-sensitive manner in vascular endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document