Evoked potentials in the hypothalamus

1959 ◽  
Vol 196 (6) ◽  
pp. 1163-1167 ◽  
Author(s):  
Shaul Feldman ◽  
Charles S. Van der Heide ◽  
Robert W. Porter

The distribution and some properties of the evoked potentials in the hypothalamus from stimulation of the sciatic nerve were investigated in 60 cats. In the posterior and lateral hypothalamus biphasic positive-negative responses of 7–10 msec. latency were found, while in the anterior and medial hypothalamus the stimuli evoked monophasic negative waves of 20–35 msec. latency. The threshold of activation of the hypothalamic potentials corresponded to the upper range of activation of group A fibers in the sciatic nerve. The hypothalamic evoked potentials had a very prolonged recovery time on double stimulation, were sensitive to pentobarbital even to a greater degree than the evoked potentials in the midbrain reticular formation, and were abolished by high frequency stimulation of the midbrain reticular formation. The long latency potentials in the hypothalamus were similar to those evoked in the midbrain reticular formation, while the short latency potentials had properties similar to those of the lemniscal potentials. This fact suggested that the short latency potentials signaled the arrival of impulses from lemniscal collaterals.

2001 ◽  
Vol 86 (5) ◽  
pp. 2583-2596 ◽  
Author(s):  
M.-J. Bourque ◽  
A. Kolta

Numerous evidence suggests that interneurons located in the lateral tegmentum at the level of the trigeminal motor nucleus contribute importantly to the circuitry involved in mastication. However, the question of whether these neurons participate actively to genesis of the rhythmic motor pattern or simply relay it to trigeminal motoneurons remains open. To answer this question, intracellular recordings were performed in an in vitro slice preparation comprising interneurons of the peritrigeminal area (PeriV) surrounding the trigeminal motor nucleus (NVmt) and the parvocellular reticular formation ventral and caudal to it (PCRt). Intracellular and extracellular injections of anterograde tracers were also used to examine the local connections established by these neurons. In 97% of recordings, electrical stimulation of adjacent areas evoked a postsynaptic potential (PSP). These PSPs were primarily excitatory, but inhibitory and biphasic responses were also induced. Most occurred at latencies longer than those required for monosynaptic transmission and were considered to involve oligosynaptic pathways. Both the anatomical and physiological findings show that all divisions of PeriV and PCRt are extensively interconnected. Most responses followed high-frequency stimulation (50 Hz) and showed little variability in latency indicating that the network reliably distributes inputs across all areas. In all neurons but one, excitatory postsynaptic potentials (EPSPs) or inhibitory postsynaptic potentials (IPSPs) were also elicited by stimulation of NVmt, suggesting the existence of excitatory and inhibitory interneurons within the motor nucleus. In a number of cases, these PSPs were reproduced by local injection of glutamate in lieu of the electrical stimulation. All EPSPs induced by stimulation of PeriV, PCRt, or NVmt were sensitive to ionotropic glutamate receptor antagonists 6-cyano-7-dinitroquinoxaline and d,l-2-amino-5-phosphonovaleric acid, while IPSPs were blocked by bicuculline and strychnine, antagonists of GABAA and glycine receptors. Examination of PeriV and PCRt intrinsic properties indicate that they form a fairly uniform network. Three types of neurons were identified on the basis of their firing adaptation properties. These types were not associated with particular regions. Only 5% of all neurons showed bursting behavior. Our results do not support the hypothesis that neurons of PeriV and PCRt participate actively to rhythm generation, but suggest instead that they are driven by rhythmical synaptic inputs. The organization of the network allows for rapid distribution of this rhythmic input across premotoneuron groups.


1976 ◽  
Vol 64 (1) ◽  
pp. 251-266
Author(s):  
K. G. Pearson ◽  
R. K. Wong ◽  
C. R. Fourtner

1. The trochanteral hair-plate afferents in the metathoracic leg of the cockroach, Periplaneta americana, were stimulated electrically and at the same time intracellular recordings were made from either motoneurones, interneurones or afferent terminals within the methathoracic ganglion. 2. Activity in the hair-plate afferents evoked short latency excitatory postsynaptic potentials (EPSPs) in femur flexor motoneurones. The latency of the IPSPs was on average 1–8 ms longer than the latency ofthe EPSPs. 3. Intracellular recordings from terminal branches of the hair-plate afferents showed that the delay between the peak of the afferent terminal spike and the beginning of the EPSPs is about 0.4 ms. This finding, together with the observations that the amplitude of the EPSPs is increased by the passage of hyperpolarizing current and decreased following high-frequency stimulation, indicates that the EPpSPs are evoked via-monosynaptic chemical synaptic junctions. 4. The observations of the long latency of the IPSPs, the need for a number of afferents to be simultaneously acive for them to be evoked and the occasional variability in latency, all indicate that the IPSPs are evoked via a disynaptic pathway…


2008 ◽  
Vol 99 (6) ◽  
pp. 3009-3026 ◽  
Author(s):  
Jesse Jackson ◽  
Clayton T. Dickson ◽  
Brian H. Bland

Evidence has accumulated suggesting that the median raphe (MR) mediates hippocampal theta desynchronization. However, few studies have evaluated theta-related neural circuitry during MR manipulation. In urethane-anesthetized rats, we investigated the effects of MR stimulation on hippocampal field and cell activity using high-frequency (100 Hz), theta burst (TBS), and slow-frequency electrical stimulation (0.5 Hz). We demonstrated that high-frequency stimulation of the MR did not elicit deactivated patterns in the forebrain, but rather elicited low-voltage activity in the neocortex and small-amplitude irregular activity (SIA) in the hippocampus. Both hippocampal phasic theta-on and -off cells were inhibited by high-frequency MR stimulation, although MR stimulation failed to affect cells that had neither state or phase relationships with theta field activity. TBS of the MR-induced theta field activity phase locked to the stimulation. Slow-frequency stimulation elicited a state-dependent reset of theta phase through a short-latency inhibition (5 ms) in phasic theta-on cells. Subpopulations of phasic theta-on cells responded in either oscillatory or nonoscillatory patterns to MR pulses, depending on their intraburst interval. off cells exhibited a state-dependent modulation of cell firing occurring preferentially during nontheta. The magnitude of MR-induced reset varied as a function of the phase of the theta oscillation when the pulse was administered. Therefore high-frequency stimulation of the MR appears to disrupt hippocampal theta through a state-dependent, short-latency inhibition of rhythmic cell populations in the hippocampus functioning to switch theta oscillations to an activated SIA field state.


2020 ◽  
Vol 44 (3) ◽  
pp. 241-249
Author(s):  
Yoshiaki Omura

While a visiting Professor at the University of Paris, VI (formerly Sorvonne) more than 40 years ago, the Author became very good friends with Dr. Paul Nogier who periodically gave seminars and workshops in Paris. After the author diagnosed his cervical problem & offered him simple help, Dr. Nogier asked the Author to present lectures and demonstrations on the effects of ear stimulation, namely the effects of acupuncture & electrical stimulation of the ear lobules. It is only now, in 2019 that we have discovered 2–5 minute high frequency stimulation of the ear lobule inhibits cancer activity for 1– 4 hours post stimulation. Although the procedure is extremely simple. First take optimal dose of Vitamin D3, which has the most essential 10 unique beneficial factors required for every human cell activity. Next, apply high frequency stimulation to ear lobule while the worst ear lobule is held by all fingers with vibrator directly touching the surface of the worst ear lobule, preferably after patient repeatedly takes optimal dose of Vitamin D3. When the worst ear lobule is held between thumb & index fingers and applying mechanical stimulation of 250 ~ 500 mechanical vibration/second for 2 ~ 5 minutes using an electrical vibrator, there is rapid disappearance of cancer activity in both the brain and rest of the body for short time duration 1 ~ 4 hours. The effect often increases by additional pressure by holding fingers. As of May 2019, the Author found that many people from various regions of the world developed early stages of multiple cancers. For evaluation of this study, U. S. patented Bi-Digital O-Ring Test (BDORT) was used which was developed by the Author while doing his Graduate experimental physics research at Colombia University. BDORT was found to be most essential for determining the beneficial effects as well as harmful effects of any substance or treatment. Using BDORT, Author was the first to recognize severe increasing mid-backache was an early sign of pancreatic cancer of President of New York State Board of Medicine after top pain specialists failed to detect the cause after 3 years of effort, while the BDORT showed early stages of cancer whereas conventional X-Ray of the pancreas did not show any cancer image until 2 months after Author detected with BDORT. For example, the optimal dose of the banana is usually about 2.0 - 2.5 millimeters cross section of the banana. A whole banana is more than 50 ~ 100 times the optimal dose. Any substance eaten in more than 25 times of its optimal dose becomes highly toxic and creates DNA mutations which can cause multiple malignancies in the presence of strong electro-magnetic field. With standard medication given by doctor, patients often become sick and they are unable to reduce body weight, unless medication is reduced or completely stopped. When the amount of zinc is very high, DNA often becomes unstable and multiple cancers can grow rapidly in the presence of strong electromagnetic field. Large amount of Vitamin C from regular orange or orange juice inhibit the most important Vitamin D3 effects. At least 3 kinds of low Vitamin C oranges will not inhibit Vitamin D3. Since B12 particularly methyl cobalamin which is a red small tablet is known to improve brain circulation very significantly we examined its effect within 20 seconds of oral intake we found the following very significant changes. Acetylcholine in both sides of the brain often increases over 4,500 ng. Longevity gene Sirtuin 1 level increases significantly for short time of few hours. Thymosin α1 and Thymosinβ4 both increase to over 1500 ng from 20 ng or less.


Sign in / Sign up

Export Citation Format

Share Document