Cardiovascular function and norepinephrine-thermogenesis in cold-acclimatized rats

1963 ◽  
Vol 204 (5) ◽  
pp. 888-894 ◽  
Author(s):  
Eugene Evonuk ◽  
John P. Hannon

The cardiovascular and metabolic actions of norepinephrine (NE) and their inter-relationships were studied at normal room temperature in anesthetized, warm-acclimatized (W-A) (26 ± 1 C) and cold-acclimatized (C-A) (3 ± 1 C) rats. The cardiac output, heart rate, stroke volume, arterial pressure, right atrial pressure, and systemic resistance were measured prior to NE infusion; during NE infusion (2 µg/min) at the 25, 50, 75, and 100% levels of increased metabolism; and after infusion of NE had ceased. Norepinephrine caused a greater increase in the cardiac output, heart rate, stroke volume, and right atrial pressure in the C-A animals than it did in W-A animals. During the early metabolic response to NE (i.e., up to 25% increase in O2 consumption) there was a marked increase in the arterial pressure of both W-A and C-A rats, with the latter showing the greater maximum response. Beyond the 25% level of increased metabolism the arterial pressure and concomitantly the systemic resistance of the C-A animals declined sharply to the preinfusion levels where they remained throughout the course of infusion. In contrast to this, the arterial pressure and systemic resistance of the W-A animals remained high. It was concluded that norepinephrine-calorigenesis in the C-A rat is supported by a greater capacity to increase the cardiac output and an ability to preferentially reduce the systemic resistance to actively metabolizing areas (i.e., the viscera).

1985 ◽  
Vol 249 (6) ◽  
pp. R776-R780 ◽  
Author(s):  
B. A. Breuhaus ◽  
H. H. Saneii ◽  
M. A. Brandt ◽  
J. E. Chimoskey

Atrial natriuretic peptides cause natriuresis, kaliuresis, diuresis, and hypotension. They relax vascular smooth muscle in vitro, and they dilate renal vessels in vivo. Hence, we tested the hypothesis that they produce hypotension by lowering total peripheral resistance. The studies were performed in conscious chronically instrumented sheep standing quietly in their cages. Atriopeptin II (AP II) was infused into the right atrium for 30 min at 0.1 nmol X kg-1 X min-1. Atriopeptin II lowers arterial pressure (9%, P less than 0.05) by lowering cardiac output (18%, P less than 0.05), stroke volume (28%, P less than 0.05), and right atrial pressure (2.3 mmHg, P less than 0.05). Heart rate and total peripheral resistance increase (16 and 13%, respectively, P less than 0.05). Partial ganglionic blockade with trimethaphan camsylate during AP II infusion prevents the increases in heart rate and total peripheral resistance. The changes in right atrial pressure, stroke volume, and cardiac output persist, and arterial pressure falls further (27%, P less than 0.05). These hemodynamic data are consistent with direct AP II-induced relaxation of venous smooth muscle with reduction of venous return, right atrial pressure, stroke volume, cardiac output, and arterial pressure, followed by reflex activation of the sympathetic nervous system to increase heart rate and total peripheral resistance. Because partial ganglionic blockade alone and AP II alone cause similar reductions in right atrial pressure (2.1 and 2.3 mmHg, respectively) but AP II causes a greater fall in stroke volume (28 vs. 13%), it is possible that AP II also causes coronary vasoconstriction.


1992 ◽  
Vol 262 (6) ◽  
pp. H1802-H1808 ◽  
Author(s):  
M. Huang ◽  
R. L. Hester ◽  
A. C. Guyton ◽  
R. A. Norman

We determined the cardiovascular responses in normal and deoxycorticosterone acetate (DOCA)-salt hypertensive rats with reduced total peripheral resistance due to an arteriovenous (a-v) fistula. Animals were divided into four groups: control, fistula, DOCA-salt, and DOCA-salt fistula. The fistula was made by anastomosing the aorta and vena cava below the renal arteries. Four weeks after the creation of the fistula both DOCA-salt and DOCA-salt fistula animals received DOCA and salt for 6–8 wk. At the end of 10–12 wk we measured mean arterial pressure, cardiac output, tissue flows, and right atrial pressure. Flow measurements using radioactive microspheres were made in anesthetized animals. Cardiac index (CI) was 202% higher in the fistula group than in the control animals and 165% higher in the DOCA-salt fistula than in the DOCA-salt animals. There was no difference in cardiac output between the control and DOCA-salt animals. The increase in cardiac output was due to the fistula flow as evidenced by a significant increase in the number of microspheres in the lung. Mean arterial pressure was 115 +/- 4 mmHg (control) and 108 +/- 5 mmHg (fistula) in non-DOCA rats but increased in both DOCA groups, 159 +/- 3 mmHg (DOCA-salt) and 145 +/- 5 mmHg (DOCA-salt fistula). Right atrial pressure was increased above control in both fistula animals but was normal in DOCA-salt animals. Total peripheral resistance (TPR) was higher than control in DOCA-salt animals, but TPR in both the fistula and DOCA-salt fistula animals was lower than control.(ABSTRACT TRUNCATED AT 250 WORDS)


1976 ◽  
Vol 51 (3) ◽  
pp. 243-255
Author(s):  
J.-F. Liard

1. Twelve conscious, chronically instrumented dogs were subjected to rapid loading with sodium chloride solution (150 mmol/l; saline) before and 1 day after bilateral nephrectomy (six dogs) or uretero-caval anastomosis (six dogs). Measurements were performed up to 3 h after the fluid load and included cardiac output with an electromagnetic flowmeter, mean arterial pressure and right atrial pressure with chronically implanted catheters, interstitial fluid pressure with a plastic capsule, heart rate, extracellular fluid volume, erythrocyte volume, plasma volume, plasma protein concentration and other variables. 2. The increase in cardiac output in response to saline load was significantly prolonged in the anephric dogs compared with those with uretero-caval anastomosis; mean arterial pressure, right atrial pressure and heart-rate changes were similar in both groups. 3. Plasma volume appeared to increase more in the anephric dogs than in those with uretero-caval anastomosis during the first hour after the infusion, although conflicting results were obtained with different estimates of plasma volume changes. Interstitial fluid pressure increased significantly less in the anephric dogs in the early stages of the fluid load. 4. Effective vascular compliance (the ratio of the change in blood volume to the change in right atrial pressure) appeared increased in the anephric dogs. On the other hand, the change in cardiac output for a given change in right atrial pressure was found to increase after bilateral nephrectomy. 5. It is suggested that the prolonged increase in cardiac output observed in anephric dogs was not the consequence of preferential plasma volume expansion nor of decreased venous compliance, but may reflect an alteration in the cardiac function curve.


1991 ◽  
Vol 260 (1) ◽  
pp. R32-R38
Author(s):  
R. S. Reddy ◽  
C. Baylis ◽  
T. A. Kotchen

The purpose of this study is to evaluate hemodynamic responses to acute volume expansion in chronically instrumented, conscious Dahl salt-sensitive (Dahl-S) and Dahl salt-resistant (Dahl-R) rats that have been maintained on either 0.45% NaCl, 1% NaCl, or 7% NaCl (5 days) intakes. Total peripheral resistance (TPR), but not arterial pressure, was increased by 5 days of 7% NaCl in Dahl-S (P less than 0.05) but not in Dahl-R. In Dahl-S, but not in Dahl-R, right atrial pressure increased with increasing dietary NaCl (P less than 0.05). On the 0.45% NaCl intake, atrial pressure did not differ in the two strains, whereas on both the 1 and 7% NaCl diets atrial pressure was higher in Dahl-S than in Dahl-R (P less than 0.05). In response to acute extracellular fluid volume expansion, arterial pressure did not change, and cardiac output increased in Dahl-S and in Dahl-R. On the 0.45% NaCl intake, TPR decreased (P less than 0.01) similarly in response to volume expansion in both strains; however, on the 1% NaCl intake TPR decreased in Dahl-R (P less than 0.05) but not in Dahl-S. In contrast, in animals fed 7% NaCl for 5 days, TPR decreased acutely in Dahl-S (P less than 0.01) but not in Dahl-R. These observations suggest that cardiopulmonary baroreflex activity is impaired in Dahl-S on a 1% NaCl intake, possibly as a consequence of elevated right atrial pressure. This alteration of the cardiopulmonary baroreflex may contribute to increased TPR in Dahl-S on a high-NaCl intake.


1980 ◽  
Vol 238 (1) ◽  
pp. H80-H86 ◽  
Author(s):  
R. D. Gilbert

Changes in cardiac output (Qco), heart rate, right atrial pressure, (Pra), and mean systemic pressure (Pms) in response to blood volume changes were measured in chronically prepared fetal sheep. With a 10% decrease in blood volume, fetal cardiac output, measured with the microsphere technique, decreased significantly from 592 +/- 28 to 471 +/- 32 ml . min-1 . kg-1. Heart rate changed little from control animals (163 +/- 5) to those with decreased volume (161 +/- 10 beats/min). Right atrial pressure decreased significantly from 5.4 +/- 0.4 to 4.2 +/- 0.6 mmHg. Mean systemic pressure decreased from 13.8 +/- 0.3 to 10.5 +/- 0.6 mmHg. With a 10% increase in fetal blood volume, cardiac output rose insignificantly to 632 +/- 38 ml . min-1 . kg-1. However, right atrial pressure increased significantly to 8.9 +/- 0.6 mmHg and mean systemic pressure increased significantly to 16.5 +/- 0.8 mmHg with the increased volume. Heart rate again changed little (153 +/- 9 beats/min). The fact that cardiac output rose only a small amount, whereas right atrial pressure rose sharply with an increased blood volume, suggests that the fetal heart is operating near the upper limit of its Starling function curve. As a result, there is very limited cardiac reserve for increases in fetal cardiac output.


2006 ◽  
Vol 290 (1) ◽  
pp. H217-H223 ◽  
Author(s):  
Terese M. Zidon ◽  
Don D. Sheriff

The distribution of cardiac output between compliant vasculature (e.g., splanchnic organs and skin) and noncompliant vasculature (e.g., skeletal muscle) is proposed to constitute an important determinant of the amount of blood available to the heart (central blood volume and pressure). The aim here was to directly test the hypothesis that diversion of blood flow from a relatively noncompliant vasculature (muscle) to compliant vasculature (splanchnic organs and skin) acts to reduce right atrial pressure. The approach was to inflate an occluder cuff on the terminal aorta for 30 s in one of two modes of ventricular pacing in five awake dogs with atrioventricular block and autonomic blockade. In one trial, cardiac output was maintained constant, meaning cuff inflation caused a portion of terminal aortic flow (a noncompliant circulation) to be diverted to the splanchnic and skin circulations (compliant circulations). In the other trial, arterial pressure was maintained constant, meaning blood flow to these other regions did not change. The response of right atrial pressure (corrected for differences in arterial pressure between the two trials) fit our hypothesis, being lower when blood flow was diverted to compliant regions. We conclude that a small (4% of cardiac output) diversion of blood flow from a noncompliant region to a compliant region reduces right atrial pressure by 0.7 mmHg.


Physiology ◽  
1992 ◽  
Vol 7 (3) ◽  
pp. 134-137 ◽  
Author(s):  
Gijs Elzinga

The descending limb of Starling's relationship between right atrial pressure and cardiac output was the cornerstone of his "law of the heart"; it was widely accepted in physiology. However, the original meaning of the law faded away over the years; the descending limb proved to be an experimental artefact.


1964 ◽  
Vol 19 (3) ◽  
pp. 457-464 ◽  
Author(s):  
Burton S. Tabakin ◽  
John S. Hanson ◽  
Thornton W. Merriam ◽  
Edgar J. Caldwell

The physiologic variables defining the circulatory and respiratory state in normal man have been measured in recumbency, standing at rest and during progressively severe grades of exercise approaching near-maximal levels. Indicator-dilution technique was used for determination of cardiac output with simultaneous radio-electrocardiographic recordings of heart rate. Direct intra-arterial pressure measurements were utilized for calculation of peripheral vascular resistance. Minute volume of ventilation, oxygen utilization, and carbon dioxide elimination were obtained from analysis of expired air collected at the time of each cardiac output determination. A peak mean workload of 1,501 kg-m/min was realized during the treadmill exercise. Increases in cardiac output over the range of exercise employed correlated well with indices of workload such as heart rate, oxygen utilization, and minute volume of ventilation. There was no correlation of stroke volume with these indices. It is concluded from examination of individual stroke-volume responses that a progressive increase in stroke volume is not a necessary or constant phenomenon in adapting to increasing workload. cardiac output in treadmill exercise; dye-dilution cardiac output determinations; arterial pressure during upright exercise; stroke-volume response to graded treadmill exercise; exercise response of cardiac output and stroke volume; peripheral vascular resistance response to position and exercise; treadmill exercise—effects on cardiac output, stroke volume, and oxygen uptake; minute ventilation, cardiac output, and stroke volume during exercise; carbon dioxide elimination during treadmill exercise; heart rate and cardiac output during treadmill exercise; exercise; physiology Submitted on July 12, 1963


1995 ◽  
Vol 269 (3) ◽  
pp. R678-R690 ◽  
Author(s):  
T. E. Lohmeier ◽  
G. A. Reinhart ◽  
H. L. Mizelle ◽  
J. P. Montani ◽  
R. Hester ◽  
...  

The purpose of this study was to elucidate the role of the renal nerves in promoting sodium retention during chronic reductions in cardiac output. In five dogs, the left kidney was denervated and the urinary bladder was surgically divided to allow separate 24-h urine collection from the innervated and denervated kidneys. Additionally, progressive reductions in cardiac output were achieved by employing an externally adjustable occluder around the pulmonary artery and by servo-controlling right atrial pressure (control = 0.9 +/- 0.2 mmHg) at 4.7 +/- 0.1, 7.5 +/- 0.1, and 9.8 +/- 0.2 mmHg for 3 days at each level. At the highest level of right atrial pressure, the 24-h values for mean arterial pressure (control = 97 +/- 3 mmHg) and cardiac output (control = 2,434 +/- 177 ml/min) were reduced approximately 25 and 55%, respectively; glomerular filtration rate fell by approximately 35% and renal plasma flow by approximately 65%. However, despite the sodium retention induced by these hemodynamic changes, there were no significant differences in renal hemodynamics or sodium excretion between the two kidneys during pulmonary artery constriction. In contrast, after release of the pulmonary artery occluder on day 9, sodium excretion increased more (approximately 28% during the initial 24 h) in innervated than in denervated kidneys. These results suggest that the renal nerves are relatively unimportant in promoting sodium retention in this model of low cardiac output but contribute significantly to the short-term elimination of sodium after partial restoration of cardiac output and mean arterial pressure.


Sign in / Sign up

Export Citation Format

Share Document