Polyamine synthesis in liver and kidney of flounder in response to methylmercury

1976 ◽  
Vol 231 (2) ◽  
pp. 560-564 ◽  
Author(s):  
CA Manen ◽  
B Schmidt-Nielsen ◽  
DH Russell

The effect of methylmercury administration on polyamine synthesis was studied in the liver and kidney of the winter flounder (Pseudopleuronectes americanus). A single injection of methylmercury resulted in five- and sevenfold elevations of ornithine decarboxylase activity in the liver and kidney within 15 and 45 h, respectively. There were elevations of both putrescine- and spermidine-stimulated S-adenosylmethionine decarboxylase activities (approximately 1.5-fold) in both tissues. Evaluation of the polyamine accumulation patterns in these tissues indicated that in the liver all three polyamines increased in concentration until 48 h and then decline. In the kidney, the concentration of putrescine increased steadily until it was 200% of control at 72 h and then declined. Spermidine concentration decreased throughout the time studied and was 17% of control at 1 wk. There was no significant change in the concentration of spermine throughout the period studied. The changes in the polyamine pools and in the activities of the polyamine biosynthetic enzymes after methylmercury administration are consistent with an involvement of the polyamines in the recovery phase to a toxic dose of methylmercury.

1977 ◽  
Vol 166 (1) ◽  
pp. 81-88 ◽  
Author(s):  
A E Pegg

1. Polyamine concentrations were decreased in rats fed on a diet deficient in vitamin B-6. 2. Ornithine decarboxylase activity was decreased by vitamin B-6 deficiency when assayed in tissue extracts without addition of pyridoxal phosphate, but was greater than in control extracts when pyridoxal phosphate was present in saturating amounts. 3. In contrast, the activity of S-adenosylmethionine decarboxylase was not enhanced by pyridoxal phosphate addition even when dialysed extracts were prepared from tissues of young rats suckled by mothers fed on the vitamin B-6-deficient diet. 4. S-Adenosylmethionine decarboxylase activities were increased by administration of methylglyoxal bis(guanylhydrazone) (1,1′-[(methylethanediylidine)dinitrilo]diguanidine) to similar extents in both control and vitamin B-6-deficient animals. 5. The spectrum of highly purified liver S-adenosylmethionine decarboxylase did not indicate the presence of pyridoxal phosphate. After inactivation of the enzyme by reaction with NaB3H4, radioactivity was incorporated into the enzyme, but was not present as a reduced derivative of pyridoxal phosphate. 6. It is concluded that the decreased concentrations of polyamines in rats fed on a diet containing vitamin B-6 may be due to decreased activity or ornithine decarboxylase or may be caused by an unknown mechanism responding to growth retardation produced by the vitamin deficiency. In either case, measurements of S-adenosylmethionine decarboxylase and ornithine decarboxylase activity under optimum conditions in vitro do not correlate with the polyamine concentrations in vivo.


1976 ◽  
Vol 231 (5) ◽  
pp. 1557-1561 ◽  
Author(s):  
DV Maudsley ◽  
J Leif ◽  
Y Kobayashi

Ornithine decarboxylase in the small intestine of starved rats was stimulated 3- to 10-fold by refeeding or administration of insulin. A peak is observed 3-5 h following treatment after which the enzyme activity rapidly declines. The rise in ornithine decarboxylase is reduced by actinomycin D or cycloheximide. The increase in enzyme activity occurs mainly in the duodenum and jejunum with less than a twofold change being observed in the ileum. A small (twofold) increase in S-adenosylmethionine decarboxylase activity in the small intestine was observed after food, but there was no change in diamine oxidase activity. Whereas pentagastrin and metiamide administration markedly stimulated histidine decarbosylase in the gastric mucosa, no consistent effect of these agents on ornithine decarboxylase in the small intestine was observed. The similarities and differences between histidine decarboxylase and ornithine decarboxylase are discussed.


1981 ◽  
Vol 196 (3) ◽  
pp. 733-738 ◽  
Author(s):  
H Korpela ◽  
E Hölttä ◽  
T Hovi ◽  
J Jänne

The stimulation of lymphocyte ornithine decarboxylase and adenosylmethionine decarboxylase produced by phytohaemagglutinin was accompanied by an equally marked, but delayed, stimulation of spermidine synthase, which is not commonly considered as an inducible enzyme. In contrast with the marked stimulation of these biosynthetic enzymes, less marked changes were observed in the biodegradative enzymes of polyamines in response to phytohaemagglutinin. Diamine oxidase activity was undetectable during all stages of the transformation. The activity of polyamine oxidase remained either constant or was slightly decreased several days after addition of the mitogen. The activity of polyamine acetylase (employing all the natural polyamines as substrates) distinctly increased both in the cytosolic and crude nuclear preparations of the cells during later stages of mitogen activation. Difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, although powerfully inhibiting ornithine decarboxylase, produced a gradual enhancement of adenosylmethionine decarboxylase activity during lymphocyte activation, without influencing the activities of the two propylamine transferases (spermidine synthase and spermine synthase).


1981 ◽  
Vol 194 (3) ◽  
pp. 975-982 ◽  
Author(s):  
R Lanz ◽  
K Brune

The phorbol ester 12-O-tetradecanoylphorbol 13-acetate induces tumour promotion, inflammation, cell proliferation and prostaglandin release. Recent reports suggest that the prostaglandins released by 12-O-tetradecanoylphorbol 13-acetate (TPA) initiate a cascade of events leading to polyamine synthesis and cell proliferation. In experiments designed to test this contention, it was found that addition of TPA (1 microM to 1 nM) to confluent mouse 3T3 fibroblasts successively caused the release of prostaglandins E2 and I2, induction of the enzyme ornithine decarboxylase (EC 4.1.1.17), stimulation of [3H]thymidine incorporation into DNA, and cell proliferation. Pretreatment of the cells with the anti-inflammatory steroid dexamethasone (1 microM) or the non-steroidal anti-inflammatory drug indomethacin (1 microM) inhibited TPA-induced prostaglandin release. However, dexamethasone enhanced the other effects of TPA, whereas indomethacin was ineffective. Addition of prostaglandin E2 to the cultures did not induce ornithine decarboxylase activity and cell proliferation. Pretreatment of the cells with 1,3-diaminopropane (1 mM) or alpha-methylornithine (5 mM), inhibitors of polyamine synthesis, decreased TPA-induced ornithine decarboxylase activity without affecting DNA synthesis. TPA stimulated [3H]thymidine incorporation into DNA, even when the ornithine decarboxylase activity was completely blocked. These data suggest that the proliferative effect of TPA on 3T3 cells is independent of prostaglandin release and polyamine synthesis.


1981 ◽  
Vol 196 (2) ◽  
pp. 603-610 ◽  
Author(s):  
D Hopkins ◽  
K L Manchester

Concentrations of spermidine, spermine and putrescine have been measured in rat diaphragm muscle after unilateral nerve section. The concentration of putrescine increased approx. 10-fold 2 days after nerve section, that of spermidine about 3-fold by day 3, whereas an increase in the concentration of spermine was only observed after 7-10 days. It was not possible to show enhanced uptake of either exogenous putrescine or spermidine by the isolated tissue during the hypertrophy. Consistent with the accumulation of putrescine, activity of ornithine decarboxylase increased within 1 day of nerve section, was maximally elevated by the second day and then declined. Synthesis of spermidine from [14C]putrescine and either methionine or S-adenosylmethionine bt diaphragm cytosol rose within 1 day of nerve section, but by day 3 had returned to normal or below normal values. Activity of adenosylmethionine decarboxylase similarly increased within 1 day of nerve section, but by day 3 had declined to below normal values. Activity of methionine adenosyltransferase was elevated throughout the period studied. The concentration of S-adenosylmethionine was likewise enhanced during hypertrophy. Administration of methylglyoxal bis(guanylhydrazone) produced a marked increase in adenosylmethionine decarboxylase activity and a large increase in putrescine concentration, but did not prevent the rise in spermidine concentration produced by denervation. Possible regulatory mechanisms of polyamine metabolism consistent with the observations are discussed.


1983 ◽  
Vol 214 (2) ◽  
pp. 293-298 ◽  
Author(s):  
D Sömjen ◽  
I Binderman ◽  
Y Weisman

The effect of cholecalciferol metabolites on ornithine decarboxylase activity and on DNA synthesis in developing long bones was investigated in vitamin D-depleted rats. In the epiphysis there was a 6.4-fold increase in ornithine decarboxylase activity 5 h after a single injection of 24R,25-dihydroxycholecalciferol but not of 24S,25-dihydroxycholecalciferol or other vitamin D metabolites. In comparison, in the diaphysis and duodenum, 1 alpha,25-dihydroxycholecalciferol, but not other vitamin D metabolites, caused a 3-3.5-fold increase in the enzyme activity. The enzyme activity in the tissues examined attained a maximal value at 5 h after the injection of the metabolites. The activity of ornithine decarboxylase in the epiphysial region increased dose-dependently as the result of a single injection of 24R,25-dihydroxycholecalciferol and attained a maximal value at a dose between 30 and 3000 ng. In addition, administration of 24R,25-dihydroxycholecalciferol, but not 24S,25-dihydroxycholecalciferol or other metabolites, caused within 24 h a 1.7-2.0-fold increase in [3H]thymidine incorporation into DNA of the epiphyses of tibial bones. In comparison, 1 alpha,25-dihydroxycholecalciferol caused a 1.5-fold increase in [3H]thymidine incorporation into DNA of the diaphyses and of the duodenum. The present data indicate that 24R,25-dihydroxycholecalciferol is involved in the regulation of epiphyseal growth, whereas 1 alpha,25,dihydroxycholecalciferol stimulates the proliferation of cells in the diaphysis of long bones and in the intestinal mucosa.


1977 ◽  
Vol 162 (1) ◽  
pp. 87-97 ◽  
Author(s):  
E E K Takyi ◽  
D J M Fuller ◽  
L J Donaldson ◽  
G H Thomas

The relationship between polyamine synthesis, growth and secretion in vivo was examined in ventral prostates from: (a) intact rats aged 3-60 weeks; (b) animals castrated for 7 days before injection with 5 alpha-dihydrotestosterone (17 beta-hydroxy-5-alpha-androstan-3-one), testosterone and 5 alpha-androstane-3 beta, 17 beta-diol for up to 10 days; (c) rats injected with the 3 beta, 17 beta-diol immediately after castration. Ornithine decarboxylase activity and the concentrations of putrescine, spermidine and spermine were measured. DNA-synthetic activity was monitored by measuring [125I]iododoxyuridine incorporation. An enhanced spermidine/spermine molar ratio reflected increased activity of the prostate. The ratio was higher (greater than 2) in prostates from sexually immature animals, than in the intact adult (1.5), suggesting that the ratio was indicative of the proliferative activity of the tissue. However, in the androgen-stimulated castrated rat, enhanced spermidine/spermine ratios tended to correlate with hypertrophy and secretion. In both sets of experiments there was a linear relationship between protein and spermidine content. High spermidine/spermine molar ratios were the consequence of a relatively low rate of accumulation of spermine relative to spermidine and protein. The relationship between polyamine synthesis and DNA-synthetic activity was investigated in cultured prostate. A combination of insulin (3 mug/ml) and testosterone (0.1 muM caused a stimulatory response in the incorporation of [125I]iododeoxyuridine and in cell division, despite a depleted polyamine content and low ornithine decarboxylase activity in the cultured tissue.


Blood ◽  
1978 ◽  
Vol 51 (6) ◽  
pp. 1021-1029
Author(s):  
WH Evans ◽  
CK Grieshaber ◽  
WC Miller ◽  
SM Wilson ◽  
HA Hoffman

Enriched fractions of mature and immature neutrophil granulocytes, isolated from guinea pig bone marrow, were assayed for ornithine decarboxylase activity and polyamine content. The results show that immature granulocytes contain at least ten times more ornithine decarboxylase activity and two times more spermidine than mature granulocytes. The incorporation of 14C-ornithine into putrescine and spermidine of intact immature granulocytes was three to four times and ten times, respectively, that of mature granulocyte preparations. Six hours after an inflammatory stimulus, transient increases of 14-fold and 3-fold in the activities of ornithine decarboxylase and S-adenosyl- L-methionine decarboxylase, respectively, were observed in immature bone marrow granulocytes. At this time the incorporation of 14C- ornithine into putrescine and spermidine in bone marrow granulocytes from stimulated animals was 14 times that of cells from controls. A maximum increase in DNA synthesis in these cells during the inflammatory response occurred 6 hr after the maximum increase in the polyamine synthetic activity. Together these data suggest that polyamine synthesis in the granulocyte compartment of the bone marrow is associated chiefly with immature proliferating cells and that increased polyamine synthesis precedes increased granulocyte proliferation in the bone marrow following an inflammatory stimulus.


Sign in / Sign up

Export Citation Format

Share Document