Osmoltye and tryptophan receptors controlling gastric emptying in the dog

1976 ◽  
Vol 231 (3) ◽  
pp. 848-853 ◽  
Author(s):  
Stephens ◽  
RF Woolson ◽  
AR Cooke

The effect of three monosaccharides, three disaccharides, two dipeptides, combinations of tryptophan with two hexoses, one hexitol, and two amino acids ongastric emptying was studied in dogs to further define the samll intestinal receptors responsive to osmolytes and tryptophan. On a molar basis the disacchardies and dipeptides were almost twice as potent as their respective constituent monosaccharides or amino acids implying that the osmoreceptor is deep to the brush border disaccharidases and cytosol dipeptidases. Tryptophan probably acts by a mechanism different from the osmoreceptor since slowing of gastric emptying by tryptophan was inhibited by methionine which has no effect on a stimulant of the osmoreceptor mechanism. Lysine unlike methionine does not share the neutral amino acid transport pathway with tryptophan. Lysine did not change the inhibitory effect of tryptophan on gastric emptying. This imples that transport of tryptophan into the intestinal cell is necessary for its slowing effect. Glucose and galactose also inhibited the tryptophan effect whereas a nonabsorbed hexitor, mannitol, was without effect. Interference by the hexoses was also probably by competition with tryptophan for transport into the cell. These studies further indicate that the tryptophan receptor is different from the osmoreceptor.

1975 ◽  
Vol 53 (9) ◽  
pp. 975-988 ◽  
Author(s):  
Danny P. Singh ◽  
Hérb. B. LéJohn

Transport of amino acids in the water-mould Achlya is an energy-dependent process. Based on competition kinetics and studies involving the influence of pH and temperature on the initial transport rates, it was concluded that the 20 amino acids (L-isomers) commonly found in proteins were transported by more than one, possibly nine, uptake systems. This is similar to the pattern elucidated for some bacteria but unlike those uncovered for all fungi studied to date. The nine different transport systems elucidated are: (i) methionine, (ii) cysteine, (iii) proline, (iv) serine–threonine, (v) aspartic and glutamic acids, (vi) glutamine and asparagine, (vii) glycine and alanine, (viii) histidine, lysine, and arginine, and (ix) phenylalanine–tyrosine–tryptophan and leucine–isoleucine–valine as two overlapping groups. Transport of all of these amino acids was inhibited by azide, cyanide, and its derivatives and 2,4-dinitrophenol. These agents normally interfere with metabolism at the level of the electron transport chain and oxidative phosphorylation. Osmotic shock treatment of the cells released, into the shock fluid, a glycopeptide that binds calcium as well as tryptophan but no other amino acid. The shocked cells are incapable of concentrating amino acids, but remain viable and reacquire this capacity when the glycopeptide is resynthesized.Calcium played more than a secondary role in the transport of the amino acids. When bound to the membrane-localized glycopeptide, it permits concentrative transport to take place. However, excess calcium can inhibit transport which can be overcome by chelating with citrate. Calculations show that the concentration of free citrate is most important. At low citrate concentrations (less than 1 mM) in the absence of exogenously supplied calcium, enhancement of amino acid transport occurs. At high concentrations (greater than 5 mM), citrate inhibits but this effect can be reversed by titrating with calcium. Evidently, the glycopeptide acts as a calcium sink to regulate the concentration of calcium made available to the cell for its membrane activities.N6-(Δ2-isopentenyl) adenine (a plant growth 'hormone') and analogues mimic the inhibitory effect of citrate and bind to the glycopeptide as well. Replot data for citrate and N6-(Δ2-isopentyl) adenine inhibition indicate that both agents have no more than one binding constant. These results implicate calcium, glycopeptide, and energy-dependent transport of solutes in some, as yet undefinable, way.


1989 ◽  
Vol 257 (3) ◽  
pp. R494-R500 ◽  
Author(s):  
B. Giordana ◽  
V. F. Sacchi ◽  
P. Parenti ◽  
G. M. Hanozet

Experiments with intestinal brush-border membrane vesicles from lepidopteran larvae disclosed the occurrence of unique cotransporter proteins that use K+ as the driver cation for the transmembrane transfer of amino acids across the luminal border of midgut enterocytes. Six apical membrane amino acid transport systems have been identified. These systems are 1) a neutral amino acid transporter with a broad spectrum of interactions with most neutral amino acids, which is highly concentrative, strongly K+- and electrical potential-dependent, poorly stereospecific, and recognizes histidine, but not proline, glycine, or alpha-(methylamino)isobutyric acid (MeAIB); 2) a specific system for L-proline; 3) a specific system for glycine with a higher affinity for Na+ than for K+; 4) a specific system for L-lysine, which is dependent on membrane potential, is highly sensitive to external K+, and does not interact with L-arginine or neutral amino acids; 5) a specific K+-dependent process for glutamic acid, which does not recognize aspartic acid; and last, 6) an apparently unique K+- driven mechanism for D-alanine, which is potential-dependent and strongly stereospecific.


1989 ◽  
Vol 143 (1) ◽  
pp. 87-100
Author(s):  
GIORGIO M. HANOZET ◽  
BARBARA GIORDANA ◽  
V. FRANCA SACCHI ◽  
PAOLO PARENTI

The presence of different potassium-dependent amino acid transport systems in the luminal membrane of the larval midgut of Philosamia cynthia Drury (Saturnidae, Lepidoptera) was investigated by means of countertransport experiments performed with brush-border membrane vesicles. The vesicles were preloaded with 14 different unlabelled amino acids, whose ability to elicit an intravesicular accumulation over the equilibrium value of six labelled amino acids (L-alanine, L-leucine, L-phenylalanine, L-glutamic acid, L-lysine and L-histidine) was tested. For histidine, the results were compared with those obtained from inhibition experiments, in which the same 14 amino acids were used as inhibitors on the cis side of the brush-border membrane. The data demonstrate the presence in the lepidopteran luminal membrane of distinct transport pathways for lysine and glutamic acid. The transport of most neutral amino acids, with the exclusionof glycine and proline, seems to occur through a system that may be similar to the neutral brush-border system (NBB) found in mammalian intestinal membranes. This system is also able to handle histidine.


1989 ◽  
Vol 257 (3) ◽  
pp. R506-R510 ◽  
Author(s):  
C. Storelli ◽  
S. Vilella ◽  
M. P. Romano ◽  
M. Maffia ◽  
G. Cassano

Brush-border membrane vesicles (BBMV) were prepared from European eel (Anguilla anguilla) intestinal epithelium by a magnesium-ethylene glycolbis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) precipitation technique. Amino acid transport by these purified vesicle preparations was investigated using either radiolabeled substrates or the voltage-sensitive fluorescent dye 3,3'-diethylthiadicarbocyanine iodide [DiSC2(5)]. All amino acids tested exhibited carrier-mediated, Na+-dependent and Na+-independent transfer processes plus diffusion. The only exceptions were glutamic acid and proline, which displayed Na+ dependency and diffusion but did not appear to be transported by Na+-independent agencies. Carrier-mediated transport kinetic constants (Kapp and Jmax) for several amino acids are reported. Cis-inhibition experiments suggested the presence of at least four distinct Na+-dependent transport systems in eel intestinal BBMV: 1) an anionic transport process for glutamic and aspartic acids; 2) a cationic mechanism for lysine and arginine; 3) a relatively specific neutral amino acid carrier for proline and alpha-(methylamino)isobutyric acid; and 4) a nonspecific neutral amino acid system for most other substrates of this group. This scheme for carnivorous fish intestine most closely approximates that reported for mammalian gut with minor dissimilarities that may relate to metabolic differences or specific dietary requirements of the two vertebrate groups.


1976 ◽  
Vol 154 (1) ◽  
pp. 43-48 ◽  
Author(s):  
J D Young ◽  
J C Ellory ◽  
E M Tucker

1. Uptake rates for 23 amino acids were measured for both normal (high-GSH) and GSH-deficient (low-GSH) erythrocytes from Finnish Landrace sheep. 2. Compared with high-GSH cells, low-GSH cells had a markedly diminished permeability to D-alanine, L-alanine, α-amino-n-butyrate, valine, cysteine, serine, threonine, asparagine, lysine and ornithine. Smaller differences were observed for glycine and proline, whereas uptake of the other amino acids was not significantly different in the two cell types.


1994 ◽  
Vol 189 (1) ◽  
pp. 55-67
Author(s):  
R Parthasarathy ◽  
W R Harvey

The time-dependent fluorescence intensity of an intravesicular potential-sensitive dye was used to probe the real-time kinetics of potential difference (PD)-dependent amino acid/Na+ symport at pH9 into brush-border membrane vesicles obtained from larval Manduca sexta midgut. Neutral amino acids (alanine, proline) are symported at higher rates as the vesicles are hyperpolarized. The symport rates of acidic (glutamate) and basic (arginine) amino acids are almost PD-independent. The half-saturation constant of alanine is PD-independent between -108 and -78 mV, although the maximal symport velocity increases by half as the voltage is increased. Amino acid throughput is evidently enhanced as the relatively high transmembrane PDs (> 150 mV, lumen positive) measured in vivo are approached. The half-saturation concentrations of Na+ were in the range 15-40 mmol l-1 for most of the amino acids examined and increased with voltage for alanine. The Vmax observed as a function of cation or amino acid concentration increased as the vesicle was hyperpolarized in the case of leucine and alanine. The data support the hypothesis that carrier and substrates are at equilibrium inasmuch as substrate translocation seems to be the rate-determining step of symport.


1995 ◽  
Vol 268 (6) ◽  
pp. C1321-C1331 ◽  
Author(s):  
A. J. Moe

Normal fetal growth and development depend on a continuous supply of amino acids from the mother to the fetus. The placenta is responsible for the transfer of amino acids between the two circulations. The human placenta is hemomonochorial, meaning that the maternal and fetal circulations are separated by a single layer of polarized epithelium called the syncytiotrophoblast, which is in direct contact with maternal blood. Transport proteins located in the microvillous and basal membranes of the syncytiotrophoblast are the principal mechanism for transfer from maternal blood to fetal blood. Knowledge of the function and regulation of syncytiotrophoblast amino acid transporters is of great importance in understanding the mechanism of placental transport and potentially improving fetal and newborn outcomes. The development of methods for the isolation of microvillous and basal membrane vesicles from human placenta over the past two decades has contributed greatly to this understanding. Now a primary cultured trophoblast model is available to study amino acid transport and regulation as the cells differentiate. The types of amino acid transporters and their distribution between the syncytiotrophoblast microvillous and basal membranes are somewhat unique compared with other polarized epithelia. These differences may reflect the unusual circumstance of this epithelium that is exposed to blood on both sides. The current state of knowledge as to the types of transport systems present in syncytiotrophoblast, their regulation, and the effects of maternal consumption of drugs on transport are discussed.


Sign in / Sign up

Export Citation Format

Share Document