Effectiveness of the aldosterone-sodium and -potassium feedback control system

1976 ◽  
Vol 231 (3) ◽  
pp. 945-953 ◽  
Author(s):  
DB Young ◽  
RE McCaa ◽  
UJ Pan ◽  
AC Guyton

This study was conducted to determine the quantitative importance of the aldosterone feedback mechanism in controlling each one of three major factors that have often been associated with aldosterone, namely, extracellular fluid sodium concentration, extracellular fluid potassium concentration, and extracellular fluid volume. To do this, the ability of the body to control these three factors in the face of marked changes in daily sodium or potassium intake was studied under two conditions: 1) in the normal dog, and 2) in the dog in which the aldosterone feedback mechanism was prevented from functioning by removing the adrenal glands and then providing a continuous fixed level of supportive aldosterone and glucocorticoids during the low and high electrolyte intake periods. Under these conditions, removal of feedback control of aldosterone secretion decreased the effectiveness of plasma potassium control by nearly fivefold (39% vs. 8% change in plasma potassium concentration), fluid volume by sixfold (12% vs. 2% change in sodium space) and had no effect on control of plasma sodium concentration (2% change with and without feedback control of aldosterone secretion.)

1958 ◽  
Vol 192 (2) ◽  
pp. 401-404 ◽  
Author(s):  
Sydney M. Friedman ◽  
Harald F Scherrer ◽  
Miyoshi Nakashima ◽  
Constance L. Friedman

Using inulin as indicator of the extracellular volume, the distribution of sodium, potassium and water was studied in rats with diabetes insipidus produced by interrruption of the supraoptico-hypophyseal tract. A well defined increase in the extracellular fluid volume associated with normal plasma sodium and reduced plasma potassium concentration was uniformly present in the rats with diabetes insipidus. These changes occurred in nephrectomized animals and were thus independent of renal function, but were in some degree referable to an increase in adrenal function since they could be partially reversed by adrenal ablation.


2015 ◽  
Vol 50 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Michael A. McKenney ◽  
Kevin C. Miller ◽  
James E. Deal ◽  
Julie A. Garden-Robinson ◽  
Yeong S. Rhee

Context: Twenty-five percent of athletic trainers administer pickle juice (PJ) to treat cramping. Anecdotally, some clinicians provide multiple boluses of PJ during exercise but warn that repeated ingestion of PJ may cause hyperkalemia. To our knowledge, no researchers have examined the effect of ingesting multiple boluses of PJ on the same day or the effect of ingestion during exercise. Objective: To determine the short-term effects of ingesting a single bolus or multiple boluses of PJ on plasma variables and to characterize changes in plasma variables when individuals ingest PJ and resume exercise. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Nine euhydrated men (age = 23 ± 4 years, height = 180.9 ± 5.8 cm, mass = 80.7 ± 13.8 kg, urine specific gravity = 1.009 ± 0.005). Intervention(s): On 3 days, participants rested for 30 minutes, and then a blood sample was collected. Participants ingested 0 or 1 bolus (1 mL·kg−1 body weight) of PJ, donned sweat suits, biked vigorously for 30 minutes (approximate temperature = 37°C, relative humidity = 18%), and had a blood sample collected. They either rested for 60 seconds (0- and 1-bolus conditions) or ingested a second 1 mL·kg−1 body weight bolus of PJ (2-bolus condition). They resumed exercise for another 35 minutes. A third blood sample was collected, and they exited the environmental chamber and rested for 60 minutes (approximate temperature = 21°C, relative humidity = 18%). Blood samples were collected at 30 and 60 minutes postexercise. Main Outcome Measure(s): Plasma sodium concentration, plasma potassium concentration, plasma osmolality, and changes in plasma volume. Results: The number of PJ boluses ingested did not affect plasma sodium concentration, plasma potassium concentration, plasma osmolality, or changes in plasma volume over time. The plasma sodium concentration, plasma potassium concentration, and plasma osmolality did not exceed 144.6 mEq·L−1 (144.6 mmol·L−1), 4.98 mEq·L−1 (4.98 mmol·L−1), and 289.5 mOsm·kg−1H2O, respectively, in any condition at any time. Conclusions: Ingesting up to 2 boluses of PJ and resuming exercise caused negligible changes in blood variables. Ingesting up to 2 boluses of PJ did not increase plasma sodium concentration or cause hyperkalemia.


1958 ◽  
Vol 36 (3) ◽  
pp. 333-338 ◽  
Author(s):  
F. A. Sréter ◽  
Sydney M. Friedman

After running a distance of 100 meters in 7 minutes, untrained rats showed a rise in plasma potassium and a fall in plasma sodium as measured in tail vein samples. These changes are in accord with in vitro observations of the effects of exercise on isolated muscle preparations and similarly are taken to indicate a gain of sodium and a loss of potassium by the exercised muscles in the whole animal. Within 10 minutes of completion of the exercise, plasma sodium concentration was restored to normal while potassium was restored within 20 minutes. Exercise was accompanied by a fall in haematocrit, which remained low for up to 40 minutes. A period of 2 months of preliminary training modified the response to exercise. In these trained animals, a fall in sodium concentration occurred as before but the rise in potassium concentration was less in degree and the haematocrit did not change. It is suggested that the rate of increase of plasma potassium is an index of muscle efficiency while the height of plasma potassium is correlated with the fatigue limit of exercise.


1978 ◽  
Vol 44 (6) ◽  
pp. 926-930 ◽  
Author(s):  
J. P. Finberg ◽  
R. Yagil ◽  
G. M. Berlyne

Plasma renin activity (PRA), renin substrate concentration (PRS), aldosterone concentration (PA), and cortisol levels were determined in five camels during dehydration (8–10 days complete denial of water) and at timed intervals after rapid rehydration in cool spring and hot summer weather. Plasma sodium concentration increased from 138 +/- 3.7 to 147 +/- 2.5 (mean +/- SE) meq/l during spring dehydration, and from 146 +/- 1.3 to 157 +/- 1.14 meq/l during dehydration in the summer. Plasma sodium concentration returned to control levels over the course of several hours following rapid rehydration. Only minor changes in plasma potassium concentration occurred. The hormonal changes were accentuated in the summer dehydration. PRA increased slightly on dehydration, and returned to control levels over the course of several hours following rehydration. PA increased slightly on dehydration but was markedly elevated 24 h after rehydration. PRS showed a slight increase following rehydration in the spring experiment, but no significant change in the summer experiment. Changes in cortisol were insignificant. The results are consistent with a role for angiotensin and aldosterone in enhancing sodium and water reabsorption from kidney and large intestine on dehydration in this species.


1980 ◽  
Vol 239 (5) ◽  
pp. R372-R376 ◽  
Author(s):  
G. D. Fink ◽  
W. J. Bryan

A small discrete area near the optic recess of the anterior ventral third ventricle (AV3V) in the rat brain has been shown to be an important mediator of cardiovascular and dipsogenic response to angiotensin II and osmotic stimuli and to be involved in normal day-to-day regulation of water and electrolyte balance. However, no attempt has been made until now to explore the function of the AV3V in species other than the rat. In the present study, rabbits subjected to electrolytic lesion of the AV3V exhibited expanded plasma volume and plasma sodium concentration, and significantly attenuated pressor responses to angiotensin II and hypertonic sodium chloride solutions injected via the lateral ventricles. Resting arterial pressure, plasma potassium concentration, extracellular fluid volume, and pressor responses to intravenous angiotensin II were not changed by lesioning. Thus, the effects of AV3V lesions in rabbits are similar, but not identical, to those previously observed in rats. Rabbits should be a suitable species in which to carry out studies aimed at distinguishing central and peripheral cardiovascular effects of angiotensin II.


1958 ◽  
Vol 36 (1) ◽  
pp. 333-338
Author(s):  
F. A. Sréter ◽  
Sydney M. Friedman

After running a distance of 100 meters in 7 minutes, untrained rats showed a rise in plasma potassium and a fall in plasma sodium as measured in tail vein samples. These changes are in accord with in vitro observations of the effects of exercise on isolated muscle preparations and similarly are taken to indicate a gain of sodium and a loss of potassium by the exercised muscles in the whole animal. Within 10 minutes of completion of the exercise, plasma sodium concentration was restored to normal while potassium was restored within 20 minutes. Exercise was accompanied by a fall in haematocrit, which remained low for up to 40 minutes. A period of 2 months of preliminary training modified the response to exercise. In these trained animals, a fall in sodium concentration occurred as before but the rise in potassium concentration was less in degree and the haematocrit did not change. It is suggested that the rate of increase of plasma potassium is an index of muscle efficiency while the height of plasma potassium is correlated with the fatigue limit of exercise.


1987 ◽  
Vol 252 (4) ◽  
pp. E454-E460 ◽  
Author(s):  
M. Schambelan ◽  
A. Sebastian ◽  
B. A. Katuna ◽  
E. Arteaga

We examined the effect of chronic metabolic acidosis on adrenocortical hormone production by administering NH4Cl for 5 days to four normal subjects. Plasma aldosterone concentration, aldosterone secretion, and urinary excretion of aldosterone-18-glucuronide increased significantly, whereas there were no significant changes in the plasma concentrations of cortisol, corticosterone, or deoxycorticosterone, or in the urinary excretion of 17-hydroxycorticoids. By day 2, plasma renin activity (PRA) and concentration (PRC) were not significantly different from control, and the slope of the regression line relating plasma aldosterone concentration to PRA was significantly greater than the slope in the control period, i.e., the sensitivity of aldosterone secretion to renin stimulation was increased. By day 5, however, PRA and PRC were increased above control. Plasma potassium concentration did not change significantly. Thus chronic NH4Cl-induced acidosis induces a sustained stimulation of aldosterone secretion in the absence of a change in adrenocorticotropin-dependent adrenocortical hormone secretion. Factors other than an increase in renin secretion and plasma potassium concentration may be involved in at least the early phase of aldosterone stimulation, suggesting that plasma hydrogen ion concentration might be a separate regulator of aldosterone secretion.


2021 ◽  
Vol 17 (7) ◽  
pp. 20-23
Author(s):  
O.M. Klygunenko ◽  
O.О. Marzan

Background. Preeclampsia in pregnant women is a threatening condition that causes significant water imbalance, particularly hyperhydration of the extracellular fluid compartment. The condition is the result of the main pathogenetic processes — endothelial dysfunction and the subsequent development of hypoproteinemia. The changes can be detected by measuring body water compartments. Objective: to investigate the effect of a standard intensive care on the body water compartment indicators in women with moderate to severe preeclampsia. Materials and methods. Ninety patients divided into three groups were examined: non-pregnant healthy women, pregnant women with healthy pregnancy, and women whose pregnancy was complicated by moderate to severe preeclampsia. Body water compartments were measured by non-invasive bioelectrical impedance analysis. Results. Pregnancy complicated by preeclampsia is accompanied by an increase in total fluid volume at 34–40 weeks due to an increase in both the extracellular and intracellular water compartments, but with a predominance of the extracellular compartment. By the 7th day of the postpartum period, there is a tendency to decrease the total fluid volume, however, interstitial and intracellular edema can be still observed. Conclusions. The results of the bioelectrical impe-dance analysis of the body water compartments show that additional methods of treatment are needed to correct the body water compartments in women with preeclampsia.


Sign in / Sign up

Export Citation Format

Share Document