scholarly journals Plasma and Electrolyte Changes in Exercising Humans After Ingestion of Multiple Boluses of Pickle Juice

2015 ◽  
Vol 50 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Michael A. McKenney ◽  
Kevin C. Miller ◽  
James E. Deal ◽  
Julie A. Garden-Robinson ◽  
Yeong S. Rhee

Context: Twenty-five percent of athletic trainers administer pickle juice (PJ) to treat cramping. Anecdotally, some clinicians provide multiple boluses of PJ during exercise but warn that repeated ingestion of PJ may cause hyperkalemia. To our knowledge, no researchers have examined the effect of ingesting multiple boluses of PJ on the same day or the effect of ingestion during exercise. Objective: To determine the short-term effects of ingesting a single bolus or multiple boluses of PJ on plasma variables and to characterize changes in plasma variables when individuals ingest PJ and resume exercise. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Nine euhydrated men (age = 23 ± 4 years, height = 180.9 ± 5.8 cm, mass = 80.7 ± 13.8 kg, urine specific gravity = 1.009 ± 0.005). Intervention(s): On 3 days, participants rested for 30 minutes, and then a blood sample was collected. Participants ingested 0 or 1 bolus (1 mL·kg−1 body weight) of PJ, donned sweat suits, biked vigorously for 30 minutes (approximate temperature = 37°C, relative humidity = 18%), and had a blood sample collected. They either rested for 60 seconds (0- and 1-bolus conditions) or ingested a second 1 mL·kg−1 body weight bolus of PJ (2-bolus condition). They resumed exercise for another 35 minutes. A third blood sample was collected, and they exited the environmental chamber and rested for 60 minutes (approximate temperature = 21°C, relative humidity = 18%). Blood samples were collected at 30 and 60 minutes postexercise. Main Outcome Measure(s): Plasma sodium concentration, plasma potassium concentration, plasma osmolality, and changes in plasma volume. Results: The number of PJ boluses ingested did not affect plasma sodium concentration, plasma potassium concentration, plasma osmolality, or changes in plasma volume over time. The plasma sodium concentration, plasma potassium concentration, and plasma osmolality did not exceed 144.6 mEq·L−1 (144.6 mmol·L−1), 4.98 mEq·L−1 (4.98 mmol·L−1), and 289.5 mOsm·kg−1H2O, respectively, in any condition at any time. Conclusions: Ingesting up to 2 boluses of PJ and resuming exercise caused negligible changes in blood variables. Ingesting up to 2 boluses of PJ did not increase plasma sodium concentration or cause hyperkalemia.

2009 ◽  
Vol 44 (5) ◽  
pp. 454-461 ◽  
Author(s):  
Kevin C. Miller ◽  
Gary Mack ◽  
Kenneth L. Knight

Abstract Context: Health care professionals advocate that athletes who are susceptible to exercise-associated muscle cramps (EAMCs) should moderately increase their fluid and electrolyte intake by drinking sport drinks. Some clinicians have also claimed drinking small volumes of pickle juice effectively relieves acute EAMCs, often alleviating them within 35 seconds. Others fear ingesting pickle juice will enhance dehydration-induced hypertonicity, thereby prolonging dehydration. Objective: To determine if ingesting small quantities of pickle juice, a carbohydrate-electrolyte (CHO-e) drink, or water increases plasma electrolytes or other selected plasma variables. Design: Crossover study. Setting: Exercise physiology laboratory. Patients or Other Participants: Nine euhydrated, healthy men (age  =  25 ± 2 years, height  =  179.4 ± 7.2 cm, mass  =  86.3 ± 15.9 kg) completed the study. Intervention(s): Resting blood samples were collected preingestion (−0.5 minutes); immediately postingestion (0 minutes); and at 1, 5, 10, 15, 20, 25, 30, 45, and 60 minutes postingestion of 1 mL/kg body mass of pickle juice, CHO-e drink, or tap water. Main Outcome Measure(s): Plasma sodium concentration, plasma magnesium concentration, plasma calcium concentration, plasma potassium concentration, plasma osmolality, and changes in plasma volume were analyzed. Urine specific gravity, osmolality, and volume were also measured to characterize hydration status. Results: Mean fluid intake was 86.3 ± 16.7 mL. Plasma sodium concentration, plasma magnesium concentration, plasma calcium concentration, plasma osmolality, and plasma volume did not change during the 60 minutes after ingestion of each fluid (P ≥ .05). Water ingestion slightly decreased plasma potassium concentration at 60 minutes (0.21 ± 0.14 mg/dL [0.21 ± 0.14 mmol/L]; P ≤ .05). Conclusions: At these volumes, ingestion of pickle juice and CHO-e drink did not cause substantial changes in plasma electrolyte concentrations, plasma osmolality, or plasma volume in rested, euhydrated men. Concern that ingesting these volumes of pickle juice might exacerbate an athlete's risk of dehydration-induced hypertonicity may be unwarranted. If EAMCs are caused by large electrolyte loss due to sweating, these volumes of pickle juice or CHO-e drink are unlikely to restore any deficit incurred by exercise.


1958 ◽  
Vol 36 (3) ◽  
pp. 333-338 ◽  
Author(s):  
F. A. Sréter ◽  
Sydney M. Friedman

After running a distance of 100 meters in 7 minutes, untrained rats showed a rise in plasma potassium and a fall in plasma sodium as measured in tail vein samples. These changes are in accord with in vitro observations of the effects of exercise on isolated muscle preparations and similarly are taken to indicate a gain of sodium and a loss of potassium by the exercised muscles in the whole animal. Within 10 minutes of completion of the exercise, plasma sodium concentration was restored to normal while potassium was restored within 20 minutes. Exercise was accompanied by a fall in haematocrit, which remained low for up to 40 minutes. A period of 2 months of preliminary training modified the response to exercise. In these trained animals, a fall in sodium concentration occurred as before but the rise in potassium concentration was less in degree and the haematocrit did not change. It is suggested that the rate of increase of plasma potassium is an index of muscle efficiency while the height of plasma potassium is correlated with the fatigue limit of exercise.


1978 ◽  
Vol 44 (6) ◽  
pp. 926-930 ◽  
Author(s):  
J. P. Finberg ◽  
R. Yagil ◽  
G. M. Berlyne

Plasma renin activity (PRA), renin substrate concentration (PRS), aldosterone concentration (PA), and cortisol levels were determined in five camels during dehydration (8–10 days complete denial of water) and at timed intervals after rapid rehydration in cool spring and hot summer weather. Plasma sodium concentration increased from 138 +/- 3.7 to 147 +/- 2.5 (mean +/- SE) meq/l during spring dehydration, and from 146 +/- 1.3 to 157 +/- 1.14 meq/l during dehydration in the summer. Plasma sodium concentration returned to control levels over the course of several hours following rapid rehydration. Only minor changes in plasma potassium concentration occurred. The hormonal changes were accentuated in the summer dehydration. PRA increased slightly on dehydration, and returned to control levels over the course of several hours following rehydration. PA increased slightly on dehydration but was markedly elevated 24 h after rehydration. PRS showed a slight increase following rehydration in the spring experiment, but no significant change in the summer experiment. Changes in cortisol were insignificant. The results are consistent with a role for angiotensin and aldosterone in enhancing sodium and water reabsorption from kidney and large intestine on dehydration in this species.


2013 ◽  
Vol 48 (6) ◽  
pp. 734-740 ◽  
Author(s):  
Scott Allen ◽  
Kevin C. Miller ◽  
Jay Albrecht ◽  
Julie Garden-Robinson ◽  
Elizabeth Blodgett-Salafia

Context: Adding sodium (Na+) to drinks improves rehydration and ad libitum fluid consumption. Clinicians (∼25%) use pickle juice (PJ) to treat cramping. Scientists warn against PJ ingestion, fearing it will cause rapid plasma volume restoration and thereby decrease thirst and delay rehydration. Advice about drinking PJ has been developed but never tested. Objective: To determine if drinking small volumes of PJ, hypertonic saline (HS), or deionized water (DIW) affects ad libitum DIW ingestion, plasma variables, or perceptual indicators. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Fifteen, euhydrated (urine specific gravity ≤ 1.01) men (age = 22 ± 2 years, height = 178 ± 6 cm, mass = 82.9 ± 8.4 kg). Intervention(s): Participants completed 3 testing days (≥72 hours between days). After a 30-minute rest, a blood sample was collected. Participants completed 60 minutes of hard exercise (temperature = 36 ± 2°C, relative humidity = 16 ± 1%). Postexercise, they rested for 30 minutes; had a blood sample collected; rated thirst, fullness, and nausea; and ingested 83 ± 8 mL of PJ, HS, or DIW. They rated drink palatability (100-mm visual analog scale) and were allowed to drink DIW ad libitum for 60 minutes. Blood samples and thirst, fullness, and nausea ratings (100-mm visual analog scales) were collected at 15, 30, 45, and 60 minutes posttreatment drink ingestion. Main Outcome Measure(s): Ad libitum DIW volume, percentage change in plasma volume, plasma osmolality (OSMp,) plasma sodium concentration ([Na+]p), and thirst, fullness, nausea, and palatability ratings. Results: Participants consumed more DIW ad libitum after HS (708.03 ± 371.03 mL) than after DIW (532.99 ± 337.14 mL, P < .05). Ad libitum DIW ingested after PJ (700.35 ± 366.15 mL) was similar to that after HS and DIW (P > .05). Plasma sodium concentration, OSMp, percentage change in plasma volume, thirst, fullness, and nausea did not differ among treatment drinks over time (P > .05). Deionized water (73 ± 14 mm) was more palatable than HS (17 ± 13 mm) or PJ (26 ± 16 mm, P < .05). Conclusions: The rationale behind advice about drinking PJ is questionable. Participants drank more, not less, after PJ ingestion, and plasma variables and perceptual indicators were similar after PJ and DIW ingestion. Pickle juice did not inhibit short-term rehydration.


1958 ◽  
Vol 36 (1) ◽  
pp. 333-338
Author(s):  
F. A. Sréter ◽  
Sydney M. Friedman

After running a distance of 100 meters in 7 minutes, untrained rats showed a rise in plasma potassium and a fall in plasma sodium as measured in tail vein samples. These changes are in accord with in vitro observations of the effects of exercise on isolated muscle preparations and similarly are taken to indicate a gain of sodium and a loss of potassium by the exercised muscles in the whole animal. Within 10 minutes of completion of the exercise, plasma sodium concentration was restored to normal while potassium was restored within 20 minutes. Exercise was accompanied by a fall in haematocrit, which remained low for up to 40 minutes. A period of 2 months of preliminary training modified the response to exercise. In these trained animals, a fall in sodium concentration occurred as before but the rise in potassium concentration was less in degree and the haematocrit did not change. It is suggested that the rate of increase of plasma potassium is an index of muscle efficiency while the height of plasma potassium is correlated with the fatigue limit of exercise.


2001 ◽  
Vol 281 (4) ◽  
pp. R1161-R1168 ◽  
Author(s):  
Mathilakath M. Vijayan ◽  
Akihiro Takemura ◽  
Thomas P. Mommsen

Freshwater (FW)-adapted tilapia ( Oreochromis mossambicus) were treated with estradiol (E2) for 4 days to stimulate protein synthesis and sampled at 0, 4, and 24 h after exposure to 50% seawater (SW). E2 increased circulating vitellogenin (VTG) levels in large amounts, indicative of unusually high rates of hepatic protein synthesis. E2 treatment prevented the recovery of plasma osmolality in 50% SW that was evident in the sham group. Plasma sodium concentration was significantly elevated with E2 in FW, but the levels did not change in 50% SW. Gill Na+-K+-ATPase activity was significantly lower in the E2 group compared with sham-injected tilapia in 50% SW. No significant differences were noted in plasma cortisol, thyroxine, triiodothyronine, or glucose concentration with E2 in 50% SW. E2 significantly lowered several key liver enzyme activities and also decreased gill lactate dehydrogenase and malate dehydrogenase activities over a 24-h period. Together, our results suggest that E2 impairs ion regulation in tilapia, partially mediated by a decreased metabolic capacity in liver and gill. The decreased tissue metabolic capacity is likely due to E2-induced energy repartitioning processes that are geared toward VTG synthesis at the expense of other energy-demanding pathways.


1976 ◽  
Vol 231 (3) ◽  
pp. 945-953 ◽  
Author(s):  
DB Young ◽  
RE McCaa ◽  
UJ Pan ◽  
AC Guyton

This study was conducted to determine the quantitative importance of the aldosterone feedback mechanism in controlling each one of three major factors that have often been associated with aldosterone, namely, extracellular fluid sodium concentration, extracellular fluid potassium concentration, and extracellular fluid volume. To do this, the ability of the body to control these three factors in the face of marked changes in daily sodium or potassium intake was studied under two conditions: 1) in the normal dog, and 2) in the dog in which the aldosterone feedback mechanism was prevented from functioning by removing the adrenal glands and then providing a continuous fixed level of supportive aldosterone and glucocorticoids during the low and high electrolyte intake periods. Under these conditions, removal of feedback control of aldosterone secretion decreased the effectiveness of plasma potassium control by nearly fivefold (39% vs. 8% change in plasma potassium concentration), fluid volume by sixfold (12% vs. 2% change in sodium space) and had no effect on control of plasma sodium concentration (2% change with and without feedback control of aldosterone secretion.)


2010 ◽  
Vol 45 (6) ◽  
pp. 601-608 ◽  
Author(s):  
Kevin C. Miller ◽  
Gary W. Mack ◽  
Kenneth L. Knight

Abstract Context: Small volumes of pickle juice (PJ) relieve muscle cramps within 85 seconds of ingestion without significantly affecting plasma variables. This effect may be neurologic rather than metabolic. Understanding PJ's gastric emptying would help to strengthen this theory. Objective: To compare gastric emptying and plasma variables after PJ and deionized water (DIW) ingestion. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Ten men (age  =  25.4 ± 0.7 years, height  =  177.1 ± 1.6 cm, mass  =  78.1 ± 3.6 kg). Intervention(s): Rested, euhydrated, and eunatremic participants ingested 7 mL·kg−1 body mass of PJ or DIW on separate days. Main Outcome Measure(s): Gastric volume was measured at 0, 5, 10, 20, and 30 minutes postingestion (using the phenol red dilution technique). Percentage changes in plasma volume and plasma sodium concentration were measured preingestion (−45 minutes) and at 5, 10, 20, and 30 minutes postingestion. Results: Initial gastric volume was 624.5 ± 27.4 mL for PJ and 659.5 ± 43.8 mL for DIW (P > .05). Both fluids began to empty within the first 5 minutes (volume emptied: PJ  =  219.2 ± 39.1 mL, DIW  =  305.0 ± 40.5 mL, P < .05). Participants who ingested PJ did not empty further after the first 5 minutes (P > .05), whereas in those who ingested DIW, gastric volume decreased to 111.6 ± 39.9 mL by 30 minutes (P < .05). The DIW group emptied faster than the PJ group between 20 and 30 minutes postingestion (P < .05). Within 5 minutes of PJ ingestion, plasma volume decreased 4.8% ± 1.6%, whereas plasma sodium concentration increased 1.6 ± 0.5 mmol·L−1 (P < .05). Similar changes occurred after DIW ingestion. Calculated plasma sodium content was unchanged for both fluids (P > .05). Conclusions: The initial decrease in gastric volume with both fluids is likely attributable to gastric distension. Failure of the PJ group to empty afterward is likely due to PJ's osmolality and acidity. Cardiovascular reflexes resulting from gastric distension are likely responsible for the plasma volume shift and rise in plasma sodium concentration despite nonsignificant changes in plasma sodium content. These data support our theory that PJ does not relieve cramps via a metabolic mechanism.


2014 ◽  
Vol 49 (3) ◽  
pp. 360-367 ◽  
Author(s):  
Kevin C. Miller

Context: Some athletes ingest pickle juice (PJ) or mustard to treat exercise-associated muscle cramps (EAMCs). Clinicians warn against this because they are concerned it will exacerbate exercise-induced hypertonicity or cause hyperkalemia. Few researchers have examined plasma responses after PJ or mustard ingestion in dehydrated, exercised individuals. Objective: To determine if ingesting PJ, mustard, or deionized water (DIW) while hypohydrated affects plasma sodium (Na+) concentration ([Na+]p), plasma potassium (K+) concentration ([K+]p), plasma osmolality (OSMp), or percentage changes in plasma volume or Na+ content. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: A total of 9 physically active, nonacclimated individuals (age = 25 ± 2 years, height = 175.5 ± 9.0 cm, mass = 78.6 ± 13.8 kg). Intervention(s): Participants exercised vigorously for 2 hours (temperature = 37°C ± 1°C, relative humidity = 24% ± 4%). After a 30-minute rest, a baseline blood sample was collected, and they ingested 1 mL/kg body mass of PJ or DIW. For the mustard trial, participants ingested a mass of mustard containing a similar amount of Na+ as for the PJ trial. Postingestion blood samples were collected at 5, 15, 30, and 60 minutes. Main Outcome Measure(s): The dependent variables were [Na+]p, [K+]p, OSMp, and percentage change in plasma Na+ content and plasma volume. Results: Participants became 2.9% ± 0.6% hypohydrated and lost 96.8 ± 27.1 mmol (conventional unit = 96.8 ± 27.1 mEq) of Na+, 8.4 ± 2 mmol (conventional unit = 8.4 ± 2 mEq) of K+, and 2.03 ± 0.44 L of fluid due to exercise-induced sweating. They ingested approximately 79 mL of PJ or DIW or 135.24 ± 22.8 g of mustard. Despite ingesting approximately 1.5 g of Na+ in the PJ and mustard trials, no changes occurred within 60 minutes postingestion for [Na+]p, [K+]p, OSMp, or percentage changes in plasma volume or Na+ content (P > .05). Conclusions: Ingesting a small bolus of PJ or large mass of mustard after dehydration did not exacerbate exercise-induced hypertonicity or cause hyperkalemia. Consuming small volumes of PJ or mustard did not fully replenish electrolytes and fluid losses. Additional research on plasma responses pre-ingestion and postingestion to these treatments in individuals experiencing acute EAMCs is needed.


Sign in / Sign up

Export Citation Format

Share Document