Granulocyte/macrophage colony-stimulating factor treatment improves alveolar epithelial barrier function in alcoholic rat lung

2004 ◽  
Vol 286 (1) ◽  
pp. L106-L111 ◽  
Author(s):  
Andres Pelaez ◽  
Rabih I. Bechara ◽  
Pratibha C. Joshi ◽  
Lou Ann S. Brown ◽  
David M. Guidot

Chronic alcohol abuse increases the risk of developing acute lung injury approximately threefold in septic patients, and ethanol ingestion for 6 wk in rats impairs alveolar epithelial barrier function both in vitro and in vivo. Granulocyte/macrophage colony-stimulating factor (GM-CSF) is a trophic factor for the alveolar epithelium, and a recent phase II clinical study suggests that GM-CSF therapy decreases sepsis-mediated lung injury. Therefore, we hypothesized that GM-CSF treatment could improve ethanol-mediated defects in the alveolar epithelium during acute stresses such as endotoxemia. In this study, we determined that recombinant rat GM-CSF improved lung liquid clearance (as reflected by lung tissue wet:dry ratios) in ethanol-fed rats anesthetized and then challenged with 2 ml of saline via a tracheostomy tube. Furthermore, GM-CSF treatment improved lung liquid clearance and decreased epithelial protein leak in both control-fed and ethanol-fed rats after 6 h of endotoxemia induced by Salmonella typhimurium lipopolysaccharide given intraperitoneally, but with the greater net effect seen in the ethanol-fed rats. Our previous studies indicate that chronic ethanol ingestion decreases lung liquid clearance by increasing intercellular permeability. Consistent with this, GM-CSF treatment in vitro decreased permeability of alveolar epithelial monolayers derived from both control-fed and ethanol-fed rats. As in the endotoxemia model in vivo, the effect of GM-CSF was most dramatic in the ethanol group. Together, these results indicate that GM-CSF treatment has previously unrecognized effects in promoting alveolar epithelial barrier integrity and that these salutary effects may be particularly relevant in the setting of chronic alcohol abuse.

2006 ◽  
Vol 291 (6) ◽  
pp. L1150-L1158 ◽  
Author(s):  
Pratibha C. Joshi ◽  
Lisa Applewhite ◽  
Patrick O. Mitchell ◽  
Khaled Fernainy ◽  
Jesse Roman ◽  
...  

Alcohol abuse dramatically increases the risk of acute lung injury. In an experimental rat model of ethanol-mediated susceptibility to lung injury, recombinant granulocyte/macrophage colony-stimulating factor (GM-CSF) restored alveolar epithelial barrier function both in vitro and in vivo, even during acute endotoxemia. These findings suggested that the alveolar epithelium, which secretes GM-CSF into the airway where it is required for alveolar macrophage maturation, likewise responds to GM-CSF priming in a receptor-mediated manner. In this study we determined that both the GM-CSF receptor α- and β-subunits (GM-CSFRα and GM-CSFRβ) are expressed throughout the rat airway epithelium and that this expression was significantly decreased in the alveolar epithelium following chronic ethanol ingestion (6 wk). In parallel, PU.1, the master transcription factor for GM-CSF signaling in hematopoietic cells, is also expressed in alveolar epithelial cells, and ethanol ingestion likewise decreased PU.1 protein expression and nuclear binding in the alveolar epithelium. Finally, GM-CSF signaling as reflected by PU.1 expression and nuclear binding was restored with recombinant GM-CSF treatment in vitro. We conclude that chronic ethanol ingestion decreases GM-CSF receptor expression and signaling in the lung epithelium. Consequently, we speculate that dampening of GM-CSF stimulation of the alveolar epithelium is responsible at least in part for the diverse functional defects that characterize the alcoholic lung and could be a therapeutic target in acute lung injury.


2019 ◽  
Author(s):  
Bethany M. Young ◽  
Keerthana Shankar ◽  
Cindy K. Tho ◽  
Amanda R. Pellegrino ◽  
Rebecca L. Heise

ABSTRACTDecellularized tissues offer a unique tool for developing regenerative biomaterials orin vitroplatforms for the study of cell-extracellular matrix (ECM) interactions. One main challenge associated with decellularized lung tissue is that ECM components can be stripped away or altered by the detergents used to remove cellular debris. Without characterizing the composition of lung decellularized ECM (dECM) and the cellular response caused by the altered composition, it is difficult to utilize dECM for regeneration and specifically, engineering the complexities of the alveolar-capillary barrier. This study takes steps towards uncovering if dECM must be enhanced with lost ECM proteins to achieve proper epithelial barrier formation. To achieve this, epithelial barrier function was assessed on dECM coatings with and without the systematic addition of several key basement membrane proteins. After comparing barrier function on collagen, fibronectin, laminin, and dECM in varying combinations as anin vitrocoating, the alveolar epithelium exhibited superior barrier function when dECM was supplemented with laminin as evidenced by trans-epithelial electrical resistance (TEER) and permeability assays. Increased barrier resistance with laminin addition was associated with upregulation of Claudin-18, E- cadherin, and junction adhesion molecule (JAM)-A, and stabilization of zonula occludens (ZO)-1 at junction complexes. The Epac/Rap1 pathway was observed to play a role in the ECM-mediated barrier function determined by protein expression and Epac inhibition. These findings reveal potential ECM coatings and molecular therapeutic targets for improved regeneration with decellularized scaffolds or edema related pathologies.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Cuiping Ye ◽  
Chaowen Huang ◽  
Mengchen Zou ◽  
Yahui Hu ◽  
Lishan Luo ◽  
...  

Abstract Background The dysfunction of airway epithelial barrier is closely related to the pathogenesis of asthma. Secreted Hsp90α participates in inflammation and Hsp90 inhibitor protects endothelial dysfunction. In the current study, we aimed to explore the role of secreted Hsp90α in asthmatic airway epithelial barrier function. Methods Male BALB/c mice were sensitized and challenged with HDM to generate asthma model. The 16HBE and Hsp90α-knockdown cells were cultured and treated according to the experiment requirements. Transepithelial Electric Resistance (TEER) and permeability of epithelial layer in vitro, distribution and expression of junction proteins both in vivo and in vitro were used to evaluate the epithelial barrier function. Western Blot was used to evaluate the expression of junction proteins and phosphorylated AKT in cells and lung tissues while ELISA were used to evaluate the Hsp90α expression and cytokines release in the lung homogenate. Results HDM resulted in a dysfunction of airway epithelial barrier both in vivo and in vitro, paralleled with the increased expression and release of Hsp90α. All of which were rescued in Hsp90α-knockdown cells or co-administration of 1G6-D7. Furthermore, either 1G6-D7 or PI3K inhibitor LY294002 suppressed the significant phosphorylation of AKT, which caused by secreted and recombinant Hsp90α, resulting in the restoration of epithelial barrier function. Conclusions Secreted Hsp90α medicates HDM-induced asthmatic airway epithelial barrier dysfunction via PI3K/AKT pathway, indicating that anti-secreted Hsp90α therapy might be a potential treatment to asthma in future.


2011 ◽  
Vol 301 (1) ◽  
pp. L40-L49 ◽  
Author(s):  
Leslie A. Mitchell ◽  
Christian E. Overgaard ◽  
Christina Ward ◽  
Susan S. Margulies ◽  
Michael Koval

Alveolar barrier function depends critically on the claudin family tight junction proteins. Of the major claudins expressed by alveolar epithelial cells, claudin (Cldn)-3 and Cldn-4 are the most closely related by amino acid homology, yet they differ dramatically in the pattern of expression. Previously published reports have shown that Cldn-3 is predominantly expressed by type II alveolar epithelial cells; Cldn-4 is expressed throughout the alveolar epithelium and is specifically upregulated in response to acute lung injury. Using primary rat alveolar epithelial cells transduced with yellow fluorescent protein-tagged claudin constructs, we have identified roles for Cldn-3 and Cldn-4 in alveolar epithelial barrier function. Surprisingly, increasing expression of Cldn-3 decreased alveolar epithelial barrier function, as assessed by transepithelial resistance and dye flux measurements. Conversely, increasing Cldn-4 expression improved alveolar epithelial transepithelial resistance compared with control cells. Other alveolar epithelial tight junction proteins were largely unaffected by increased expression of Cldn-3 and Cldn-4. Taken together, these results demonstrate that, in the context of the alveolar epithelium, Cldn-3 and Cldn-4 have different effects on paracellular permeability, despite significant homology in their extracellular loop domains.


2020 ◽  
Vol 11 (4) ◽  
pp. 3657-3667
Author(s):  
Han Su ◽  
Weijie Zhao ◽  
Fenglin Zhang ◽  
Min Song ◽  
Fangfang Liu ◽  
...  

In vitro and in vivo studies show that c9, t11-CLA, but not t10, c12-CLA isomer, impairs intestinal epithelial barrier function in IPEC-J2 cells and mice via activation of GPR120-[Ca2+]i and the MLCK pathway.


2006 ◽  
Vol 291 (3) ◽  
pp. L354-L361 ◽  
Author(s):  
Michael T. Ganter ◽  
Lorraine B. Ware ◽  
Marybeth Howard ◽  
Jérémie Roux ◽  
Brandi Gartland ◽  
...  

Previous studies have shown that heat shock protein 72 (Hsp72) is found in the extracellular space (eHsp72) and that eHsp72 has potent immunomodulatory effects. However, whether eHsp72 is present in the distal air spaces and whether eHsp72 could modulate removal of alveolar edema is unknown. The first objective was to determine whether Hsp72 is released within air spaces and whether Hsp72 levels in pulmonary edema fluid would correlate with the capacity of the alveolar epithelium to remove alveolar edema fluid in patients with ALI/ARDS. Patients with hydrostatic edema served as controls. The second objective was to determine whether activation of the stress protein response (SPR) caused the release of Hsp72 into the extracellular space in vivo and in vitro and to determine whether SPR activation and/or eHsp72 itself would prevent the IL-1β-mediated inhibition of the vectorial fluid transport across alveolar type II cells. We found that eHsp72 was present in plasma and pulmonary edema fluid of ALI patients and that eHsp72 was significantly higher in pulmonary edema fluid from patients with preserved alveolar epithelial fluid clearance. Furthermore, SPR activation in vivo in mice and in vitro in lung endothelial, epithelial, and macrophage cells caused intracellular expression and extracellular release of Hsp72. Finally, SPR activation, but not eHsp72 itself, prevented the decrease in alveolar epithelial ion transport induced by exposure to IL-1β. Thus SPR may protect the alveolar epithelium against oxidative stress associated with experimental ALI, and eHsp72 may serve as a marker of SPR activation in the distal air spaces of patients with ALI.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S28-S28
Author(s):  
Ivy Ka Man Law ◽  
Carl Rankin ◽  
Charalabos Pothoulakis

Abstract Background and Aims Colonic epithelial integrity is often compromised during colonic inflammation and Inflammatory Bowel Disease. Aftiphilin (AFTPH) is a downstream target of microRNA-133a and its expression is reduced in colonic tissues of wild type mice from experimental colitis models and colonic biopsies from patients with ulcerative colitis. We have previously shown that AFTPH is involved in regulating intestinal epithelial barrier function and actin organization in human colonic epithelial cells in vitro (DDW 2016). On the other hand, our results suggested that global aftiphilin knock-out is embryonic lethal in mouse models (DDW 2019). Here, we further examined the role of AFTPH in regulating actin organization in vitro and characterize the colonic epithelial cell-specific aftiphilin knock-out mice. Methods Human colonic epithelial NCM460 cells were transfected with si-RNA against AFTPH to achieve transient AFTPH gene-silencing. Stable AFTPH knock-down clones were generated by transducing Caco2-BBE cells with recombinant lentivirus carrying sh-AFTPH or control sh-RNA. To create intestinal epithelial cell-specific aftiphilin knock-out mice, Aftph flox/flox mice were cross-bred with B6.Cg-Tg(Vil1-cre)997Gum/J mice, which express Villin-driven Cre recombinase (Vil-Cre), to generate intestinal epithelial cell-specific aftiphilin knock-out mice (Aftph Vil-/Vil-). Protein expression of F- and G-actin and p70S6K were detected using Western blot. Tissues from various organs were collected with Aftph Vil-/Vil- and its wildtype counterparts at 12 weeks. Results Results from western blot analysis showed that F-/G-actin ratio in AFTPH gene-silenced NCM460 cells were 0.6±0.17 fold, when compared to the treatment control. In addition, AFTPH gene-silencing in human colonic epithelial cells activated p70S6K, a kinase that is involved in actin organization, when compared to treatment control (1.2±0.15 vs. 2.0±0.15, p=0.0354). Furthermore, transepithelial electric resistance (TER) of Caco2-BBE cells deficient in AFTPH is significantly lower than that of control cells (0.5±0.07 fold). Lastly, in vivo intestinal epithelial cell-specific Aftph knock-out increased the length of small intestine, when compared to that of wild type mice (30.7±0.33 vs. 34.8±0.97, p=0.02), while the tissue weight of spleen to body weight was reduced (0.30±0.011 vs. 0.26±0.006, p=0.0169). Summary and Conclusions Our results indicate that AFTPH directly regulates epithelial barrier function and actin organization through mediating F-/G-actin ratio in human colonic epithelial cells, possibly through p70S6K. Importantly, intestinal epithelial cell-specific knock-out in vivo increased intestinal length and reduced size of the spleen. Our results suggested that AFTPH is crucial in regulating colonic epithelial barrier function in vitro and intestinal homeostasis.


2009 ◽  
Vol 297 (4) ◽  
pp. G735-G750 ◽  
Author(s):  
V. S. Conlin ◽  
X. Wu ◽  
C. Nguyen ◽  
C. Dai ◽  
B. A. Vallance ◽  
...  

Attaching and effacing bacterial pathogens attach to the apical surface of epithelial cells and disrupt epithelial barrier function, increasing permeability and allowing luminal contents access to the underlying milieu. Previous in vitro studies demonstrated that the neuropeptide vasoactive intestinal peptide (VIP) regulates epithelial paracellular permeability, and the high concentrations and close proximity of VIP-containing nerve fibers to intestinal epithelial cells would support such a function in vivo. The aim of this study was to examine whether VIP treatment modulated Citrobacter rodentium-induced disruption of intestinal barrier integrity and to identify potential mechanisms of action. Administration of VIP had no effect on bacterial attachment although histopathological scoring demonstrated a VIP-induced amelioration of colitis-induced epithelial damage compared with controls. VIP treatment prevented the infection-induced increase in mannitol flux a measure of paracellular permeability, resulting in levels similar to control mice, and immunohistochemical studies demonstrated that VIP prevented the translocation of tight junction proteins: zonula occludens-1, occludin, and claudin-3. Enteropathogenic Escherichia coli (EPEC) infection of Caco-2 monolayers confirmed a protective role for VIP on epithelial barrier function. VIP prevented EPEC-induced increase in long myosin light chain kinase (MLCK) expression and myosin light chain phosphorylation (p-MLC). Furthermore, MLCK inhibition significantly attenuated bacterial-induced epithelial damage both in vivo and in vitro. In conclusion, our results indicate that VIP protects the colonic epithelial barrier by minimizing bacterial-induced redistribution of tight junction proteins in part through actions on MLCK and MLC phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document