HIV-1 Tat protein-induced VCAM-1 expression in human pulmonary artery endothelial cells and its signaling

2005 ◽  
Vol 289 (2) ◽  
pp. L252-L260 ◽  
Author(s):  
Kai Liu ◽  
David S. Chi ◽  
Chuanfu Li ◽  
H. Kenton Hall ◽  
Denise M. Milhorn ◽  
...  

Expression of cell adhesion molecule in endothelial cells upon activation by human immunodeficiency virus (HIV) infection is associated with the development of atherosclerotic vasculopathy. We postulated that induction of vascular cell adhesion molecule-1 (VCAM-1) by HIV-1 Tat protein in endothelial cells might represent an early event that could culminate in inflammatory cell recruitment and vascular injury. We determined the role of HIV-1 Tat protein in VCAM-1 expression in human pulmonary artery endothelial cells (HPAEC). HIV-1 Tat protein treatment significantly increased cell-surface expression of VCAM-1 in HPAEC. Consistently, mRNA expression of VCAM-1 was also increased by HIV-1 Tat protein as measured by RT-PCR. HIV-1 Tat protein-induced VCAM-1 expression was abolished by the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) and the p38 MAPK inhibitor SB-203580. Furthermore, HIV-1 Tat protein enhanced DNA binding activity of NF-κB, facilitated nuclear translocation of NF-κB subunit p65, and increased production of reactive oxygen species (ROS). Similarly to VCAM-1 expression, HIV-1 Tat protein-induced NF-κB activation and ROS generation were abrogated by PDTC and SB-203580. These data indicate that HIV-1 Tat protein is able to induce VCAM-1 expression in HPAEC, which may represent a pivotal early molecular event in HIV-induced vascular/pulmonary injury. These data also suggest that the molecular mechanism underlying the HIV-1 Tat protein-induced VCAM-1 expression may involve ROS generation, p38 MAPK activation, and NF-κB translocation, which are the characteristics of pulmonary endothelial cell activation.

1991 ◽  
Vol 114 (3) ◽  
pp. 557-565 ◽  
Author(s):  
K Miyake ◽  
K Medina ◽  
K Ishihara ◽  
M Kimoto ◽  
R Auerbach ◽  
...  

Two new mAbs (M/K-1 and M/K-2) define an adhesion molecule expressed on stromal cell clones derived from murine bone marrow. The protein is similar in size to a human endothelial cell adhesion molecule known as VCAM-1 or INCAM110. VCAM-1 is expressed on endothelial cells in inflammatory sites and recognized by the integrin VLA-4 expressed on lymphocytes and monocytes. The new stromal cell molecule is a candidate ligand for the VLA-4 expressed on immature B lineage lymphocytes and a possible homologue of human VCAM-1. We now report additional similarities in the distribution, structure, and function of these proteins. The M/K antibodies detected large cells in normal bone marrow, as well as rare cells in other tissues. The antigen was constitutively expressed and functioned as a cell adhesion molecule on cultured murine endothelial cells. It correlated with the presence of mRNA which hybridized to a human VCAM-1 cDNA probe. Partial NH2 terminal amino acid sequencing of the murine protein revealed similarities to VCAM-1 and attachment of human lymphoma cells to murine endothelial cell lines was inhibited by the M/K antibodies. All of these observations suggest that the murine and human cell adhesion proteins may be related. The antibodies selectively interfered with B lymphocyte formation when included in long term bone marrow cultures. Moreover, they caused rapid detachment of lymphocytes from the adherent layer when added to preestablished cultures. The VCAM-like cell adhesion molecule on stromal cells and VLA-4 on lymphocyte precursors may both be important for B lymphocyte formation.


2019 ◽  
Vol 20 (21) ◽  
pp. 5383 ◽  
Author(s):  
Li Zhang ◽  
Feifei Wang ◽  
Qing Zhang ◽  
Qiuming Liang ◽  
Shumei Wang ◽  
...  

Inflammation is a key mediator in the progression of atherosclerosis (AS). Benzoinum, a resin secreted from the bark of Styrax tonkinensis, has been widely used as a form of traditional Chinese medicine in clinical settings to enhance cardiovascular function, but the active components of the resin responsible for those pharmaceutical effects remain unclear. To better clarify these components, a new phenylpropane derivative termed stybenpropol A was isolated from benzoinum and characterized via comprehensive spectra a nalysis. We further assessed how this phenylpropane derivative affected treatment of human umbilical vein endothelial cells (HUVECs) with tumor necrosis factor-α (TNF-α). Our results revealed that stybenpropol A reduced soluble intercellular cell adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), interleukin-8 (IL-8), and interleukin-1β (IL-1β) expression by ELISA, inhibited apoptosis, and accelerated nitric oxide (NO) release in TNF-α-treated HUVECs. We further found that stybenpropol A decreased VCAM-1, ICAM-1, Bax, and caspase-9 protein levels, and increased the protein levels of Bcl-2, IKK-β, and IκB-α. This study identified a new, natural phenylpropane derivative of benzoinum, and is the first to reveal its cytoprotective effects in the context of TNF-α-treated HUVECs via regulation of the NF-κB and caspase-9 signaling pathways.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Ting-Hein Lee ◽  
Joseph Miano

In pathological vascular remodeling, contractile vascular smooth muscle cells (VSMCs) switch their phenotype to highly proliferative and migratory states leading to neointimal formation. Inflammatory cell recruitment and infiltration, which is dependent on the increased expression of adhesion molecules on the endothelial cells, is a key event to initiate SMC phenotypic modulation in vascular remodeling. Serine carboxypeptidase 1 (scpep1), a novel protease containing the putative catalytic triad (Ser-Asp-His) common to all members of the serine protease family, has been proved to be involved in vascular remodeling by promoting SMC proliferation and migration in a catalytic triad-dependent manner. To determine whether Scpep1 modulates leukocyte adhesion and infiltration, a flow-induced model of vascular remodeling was conducted in wild-type (WT) or Scpep1 knockout (KO) mice. Scpep1-null mice show a decreased number of infiltrated leukocytes into the intima and media compared to WT mice. Further, mice devoid of Scpep1 show a dramatic reduction of vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) expression in vessels in comparison with that of WT mice. Consistent with our in vivo data, the expression levels of ICAM-1 and VCAM-1 on human umbilical vein endothelial cells (HUVECs) transfected with SiRNA against Scpep1 were significantly decreased after TNF-α treatment. Taken together, these data suggest that Scpep1 may increase leukocyte extravasation by increasing the expression of VCAM-1 and ICAM-1 adhesion molecules.


Sign in / Sign up

Export Citation Format

Share Document