Antenatal Mesenchymal Stromal Cell Extracellular Vesicle Treatment Preserves Lung Development in a Model of Bronchopulmonary Dysplasia Due to Chorioamnionitis

Author(s):  
Alison Nicole Abele ◽  
Elizabeth S Taglauer ◽  
Maricar Almeda ◽  
Noah Wilson ◽  
Abigail Abikoye ◽  
...  

Background: Antenatal stressors such as chorioamnionitis (CA) increase the risk for bronchopulmonary dysplasia (BPD). Studies have shown that experimental BPD can be ameliorated by postnatal treatment with mesenchymal stromal cell-derived extracellular vesicles (MEx). However, the antenatal efficacy of MEx to prevent BPD is unknown. Objective: To determine whether antenatal MEx therapy attenuates intrauterine inflammation and preserves lung growth in a rat model of CA-induced BPD. Methods: At embryonic day (E)20, rat litters were treated with intra-amniotic injections of saline, endotoxin (ETX) to model chorioamnionitis, MEx, or ETX plus MEx followed by cesarean section delivery with placental harvest at E22. Placental and lung evaluations were conducted at day 0 and day 14, respectively. To assess the effects of ETX and MEx on lung growth in vitro, E15 lung explants were imaged for distal branching. Results: Placental tissues from ETX-exposed pregnancies showed increased expression of inflammatory markers NLRP-3 and IL-1ß and altered spiral artery morphology. Additionally, infant rats exposed to intrauterine ETX had reduced alveolarization and pulmonary vessel density (PVD), increased right ventricular hypertrophy (RVH), and decreased lung mechanics. Intrauterine MEx therapy of ETX-exposed pups reduced inflammatory cytokines, normalized spiral artery architecture, and preserved distal lung growth and mechanics. In vitro studies showed that MEx treatment enhanced distal lung branching and increased VEGF and SPC gene expression. Conclusions: Antenatal MEx treatment preserved distal lung growth and reduced intrauterine inflammation in a model of CA-induced BPD. We speculate that MEx may provide a novel therapeutic strategy to prevent BPD due to antenatal inflammation.

Bone Reports ◽  
2020 ◽  
Vol 13 ◽  
pp. 100509
Author(s):  
Alasdair G. Kay ◽  
James Fox ◽  
Andrew Stone ◽  
Sally James ◽  
Elizabeth Kapasa ◽  
...  

Cytotherapy ◽  
2013 ◽  
Vol 15 (12) ◽  
pp. 1484-1497 ◽  
Author(s):  
Wayne Y.W. Lee ◽  
Ting Zhang ◽  
Carol P.Y. Lau ◽  
C.C. Wang ◽  
Kai-Ming Chan ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Samuel Shani ◽  
Raja Elina Ahmad ◽  
Sangeetha Vasudevaraj Naveen ◽  
Malliga Raman Murali ◽  
Karunanithi Puvanan ◽  
...  

Platelet rich concentrate (PRC) is a natural adjuvant that aids in human mesenchymal stromal cell (hMSC) proliferationin vitro; however, its role requires further exploration. This study was conducted to determine the optimal concentration of PRC required for achieving the maximal proliferation, and the need for activating the platelets to achieve this effect, and if PRC could independently induce early differentiation of hMSC. The gene expression of markers for osteocytes (ALP, RUNX2), chondrocytes (SOX9, COL2A1), and adipocytes (PPAR-γ) was determined at each time point in hMSC treated with 15% activated and nonactivated PRC since maximal proliferative effect was achieved at this concentration. The isolated PRC had approximately fourfold higher platelet count than whole blood. There was no significant difference in hMSC proliferation between the activated and nonactivated PRC. Only RUNX2 and SOX9 genes were upregulated throughout the 8 days. However, protein expression study showed formation of oil globules from day 4, significant increase in ALP at days 6 and 8(P≤0.05), and increased glycosaminoglycan levels at all time points(P<0.05), suggesting the early differentiation of hMSC into osteogenic and adipogenic lineages. This study demonstrates that the use of PRC increased hMSC proliferation and induced early differentiation of hMSC into multiple mesenchymal lineages, without preactivation or addition of differentiation medium.


Sign in / Sign up

Export Citation Format

Share Document